Incidence of Postoperative Pneumonia and Oral Microbiome for Patients with Cancer Operation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Oral Examination and Preoperative Oral Care
2.3. Sampling
2.4. Microbial DNA Extraction
2.5. Microbial Community Analysis
2.6. Diagnosis of Pneumonia
2.7. Statistical Analysis
3. Results
3.1. Clincal Parameters of the Patients Who Paticipated in This Study
3.2. Sequence and Adiversity
3.3. Changes in Oral Microbiome Composition at Phylum and Genous Level
3.4. Prediction of Incience of Pneumonia by Oral Bacterial-Specific Species
3.4.1. ROC Analysis for the Prediction of Incidence of Pneumonia
3.4.2. Decision Analysis for the Prediction of Incidence of Pneumonia
3.5. Ordonation Analysis of the Oral Pathogenic Species for the Pnumonia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Könönen, E.; Müller, H.P. Microbiology of aggressive periodontitis. Periodontol 2000 2014, 65, 46–78. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, A. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontol 2000 2018, 76, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Khadka, S.; Khan, S.; King, A.; Goldberg, L.R.; Crocombe, L.; Bettiol, S. Poor oral hygiene, oral microorganisms and aspiration pneumonia risk in older people in residential aged care: A systematic review. Age Ageing 2021, 50, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Shen, D.; Liu, C.; Ding, Y. Protein Tyrosine and Serine/Threonine phosphorylation in oral bacterial dysbiosis and bacteria-host interaction. Front. Cell. Infect. Microbiol. 2022, 11, 814659. [Google Scholar] [CrossRef] [PubMed]
- Mammen, M.J.; Scannapieco, F.A.; Sethi, S. Oral-lung microbiome interactions in lung diseases. Periodontol 2000 2020, 83, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Scannapieco, F.A.; Cantos, A. Oral inflammation and infection, and chronic medical diseases: Implications for the elderly. Periodontol 2000 2016, 72, 153–175. [Google Scholar] [CrossRef]
- Kazaure, H.S.; Martin, M.; Yoon, J.K.; Wren, S.M. Long-term results of a postoperative pneumonia prevention program for the inpatient surgical ward. JAMA Surg. 2014, 149, 914–918. [Google Scholar] [CrossRef] [Green Version]
- Chastre, J.; Fagon, J.Y. Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef]
- Elwishahy, A.; Antia, K.; Bhusari, S.; Ilechukwu, N.C.; Horstick, O.; Winkler, V. Porphyromonas gingivalis as a risk factor to Alzheimer’s Disease: A Systematic Review. J. Alzheimers Dis. Rep. 2021, 5, 721–732. [Google Scholar] [CrossRef]
- Rello, J.; Ollendorf, D.A.; Oster, G.; Vera-Llonch, M.; Bellm, L.; Redman, R.; Kollef, M. Epidemiology and outcomes of ventilatorassociated pneumonia in a large US database. Chest 2002, 122, 2115–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, D.K.; Shukla, S.J.; Olsen, M.A.; Kollef, M.H.; Hollenbeak, C.S.; Cohen, M.M.; Fraser, V.J. Outcome and attributable cost of ventilator-associated pneumonia among intensive care unit patients in a suburban medical center. Crit. Care Med. 2003, 31, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Scannapieco, F.A.; Bush, R.B.; Paju, S. Associations between periodontal disease and risk for nosocomial bacterial pneumonia and chronic obstructive pulmonary disease. A systematic review. Ann. Periodontol. 2003, 8, 54–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inai, Y.; Nomura, Y.; Takarada, T.; Hanada, N.; Wada, N. Risk factors for postoperative pneumonia according to examination findings before surgery under general anesthesia. Clin. Oral Investig. 2020, 24, 3577–3585. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.S.; Cho, Y.J.; Lee, K.; Yoon, S.H.; Kim, M.; Na, H.; Park, S.C.; Jeon, Y.S.; Lee, J.H.; Yi, H.; et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Otsuka, R.; Hasegawa, R.; Hanada, N. Oral microbiome of children living in an isolated area in Myanmar. Int. J. Environ. Res. Public Health 2020, 17, 4033. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Kuroiwa, Y.; Nakamura, K.; Ito, H.; Kanemitsu, Y.; Masuda, N.; Tsubosa, Y.; Satoh, T.; Yokomizo, A.; Fukuda, H.; et al. Extended Clavien–Dindo classification of surgical com plications: Japan Clinical Oncology Group postoperative complications criteria. Surg. Today 2016, 46, 668–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimpo, Y.; Nomura, Y.; Sekiya, T.; Arai, C.; Okada, A.; Sogabe, K.; Hanada, N.; Tomonari, H. Effects of the dental caries preventive procedure on the white spot lesions during orthodontic treatment-An open label randomized controlled trial. J. Clin. Med. 2022, 11, 854. [Google Scholar] [CrossRef]
- Nomura, Y.; Kakuta, K.; Kaneko, N.; Nohno, K.; Yoshihara, A.; Hanada, N. The oral microbiome of healthy Japanese people at the age of 90. Appl. Sci. 2020, 10, 6450. [Google Scholar] [CrossRef]
- Xu, X.; Xie, Z.; Yang, Z.; Li, D.; Xu, X. t-SNE Based Classification Approach to Compositional Microbiome Data. Front. Genet. 2020, 11, 620143. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Shen, X.; Jiang, X.; Wei, K.; He, T.; Ma, Y.; Liu, J.; Hu, X. Nonlinear expression and visualization of nonmetric relationships in genetic diseases and microbiome data. BMC Bioinform. 2018, 19, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghannam, R.B.; Techtmann, S.M. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Comput. Struct. Biotechnol. J. 2021, 19, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Kakuta, E.; Okada, A.; Otsuka, R.; Shimada, M.; Tomizawa, Y.; Taguchi, C.; Arikawa, K.; Daikoku, H.; Sato, T.; et al. Oral microbiome in four female centenarians. Appl. Sci. 2020, 10, 5312. [Google Scholar] [CrossRef]
- Zakharkina, T.; Martin-Loeches, I.; Matamoros, S.; Povoa, P.; Torres, A.; Kastelijn, J.B.; Hofstra, J.J.; de Wever, B.; de Jong, M.; Schultz, M.J.; et al. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax 2017, 72, 803–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromentin, M.; Ricard, J.D.; Roux, D. Respiratory microbiome in mechanically ventilated patients: A narrative review. Intensive Care Med. 2021, 47, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Sands, K.M.; Twigg, J.A.; Lewis, M.A.O.; Wise, M.P.; Marchesi, J.R.; Smith, A.; Wilson, M.J.; Williams, D.W. Microbial profiling of dental plaque from mechanically ventilated patients. J. Med. Microbiol. 2016, 65, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Sands, K.M.; Wilson, M.J.; Lewis, M.A.O.; Wise, M.P.; Palmer, N.; Hayes, A.J.; Barnes, R.A.; Williams, D.W. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J. Crit. Care 2017, 37, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, N.I.; Palmer, R.J., Jr.; Cisar, J.O.; Kolenbrander, P.E. Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque. J. Bacteriol. 2008, 190, 8145–8154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashima, I.; Nakazawa, F. The influence of oral Veillonella species on biofilms formed by Streptococcus species. Anaerobe 2014, 28, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Mashima, I.; Nakazawa, F. The interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation. J. Bacteriol. 2015, 197, 2104–2111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzel, N.G.; Teles, F.R.; Teles, R.P.; Song, X.Q.; Torresyap, G.; Socransky, S.S.; Haffajee, A.D.J. Microbial shifts during dental biofilm re-development in the absence of oral hygiene in periodontal health and disease. J. Clin. Periodontol. 2011, 38, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Zaura, E.; Keijser, B.J.; Huse, S.M.; Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009, 9, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cargill, J.S.; Scott, K.S.; Gascoyne-Binzi, D.; Sandoe, J.A.T. Granulicatella infection: Diagnosis and management. Med. Microbiol. 2012, 61, 755–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeican, I.I.; Barbu Tudoran, L.; Florea, A.; Flonta, M.; Trombitas, V.; Apostol, A.; Dumitru, M.; Aluaș, M.; Junie, L.M.; Albu, S. Chronic Rhinosinusitis: MALDI-TOF Mass Spectrometry Microbiological Diagnosis and Electron Microscopy Analysis; Experience of the 2nd Otorhinolaryngology Clinic of Cluj-Napoca, Romania. J. Clin. Med. 2020, 9, 3973. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Yokoe, S.; Ogata, Y.; Sato, S.; Imai, K. Exposure to Porphyromonas gingivalis induces production of proinflammatory cytokine via TLR2 from human respiratory epithelial cells. J. Clin. Med. 2020, 9, 3433. [Google Scholar] [CrossRef] [PubMed]
- Benedyk, M.; Mydel, P.M.; Delaleu, N.; Płaza, K.; Gawron, K.; Milewska, A.; Maresz, K.; Koziel, J.; Pyrc, K.; Potempa, J. Gingipains: Critical factors in the development of aspiration pneumonia caused by Porphyromonas gingivalis. J. Innate Immun. 2016, 8, 185–198. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shiotsu, N.; Uchida-Fukuhara, Y.; Guo, J.; Weng, Y.; Ikegame, M.; Wang, Z.; Ono, K.; Kamioka, H.; Torii, Y.; et al. Outer membrane vesicles derived from Porphyromonas gingivalis induced cell death with disruption of tight junctions in human lung epithelial cells. Arch. Oral Biol. 2020, 118, 104841. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, K.; Yanagihara, K.; Harada, Y.; Yamada, K.; Migiyama, Y.; Morinaga, Y.; Izumikawa, K.; Kohno, S. Quantitative detection of periodontopathic bacteria in lower respiratory tract specimens by real-time PCR. J. Infect. Chemother. 2017, 23, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Costache, A.; Berghi, O.N.; Cergan, R.; Dumitru, M.; Neagos, A.; Popa, L.G.; Giurcaneanu, C.; Vrinceanu, D. Respiratory allergies: Salicaceae sensitization (Review). Exp. Ther. Med. 2021, 21, 609. [Google Scholar] [CrossRef]
- Ma, C.M.; Liu, Q.; Li, M.L.; Ji, M.J.; Zhang, J.D.; Zhang, B.H.; Yin, F.Z. The Effects of type 2 diabetes and postoperative pneumonia on the mortality in inpatients with surgery. Diabetes Metab. Syndr. Obes. 2019, 12, 2507–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmeister, B.C.; Ducasse, C.K.; González, L.M.; Quilodrán, S.C.; Joyas, M.A. Pulmonary and thoracic infection by Fusobacterium nucleatum. Andes. Pediatr. 2021, 92, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Hayata, M.; Watanabe, N.; Tamura, M.; Kamio, N.; Tanaka, H.; Nodomi, K.; Miya, C.; Nakayama, E.; Ueda, K.; Ogata, Y.; et al. The Periodontopathic bacterium Fusobacterium nucleatum induced proinflammatory cytokine production by human respiratory epithelial cell lines and in the lower respiratory organs in mice. Cell Physiol. Biochem. 2019, 53, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carvalho Baptista, I.M.; Martinho, F.C.; Nascimento, G.G.; da Rocha Santos, C.E.; Prado, R.F.D.; Valera, M.C. Colonization of oropharynx and lower respiratory tract in critical patients: Risk of ventilator-associated pneumonia. Arch. Oral Biol. 2018, 85, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, L.; Zhang, C.; Lyu, J.; Yan, C.; Cao, R.; Pan, M.; Li, Y. Beware of pharyngeal Fusobacterium nucleatum in COVID-19. BMC Microbiol. 2021, 21, 277. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Hountras, P.; Wunderink, R.G. The microbiome in mechanically ventilated patients. Curr. Opin. Infect. Dis. 2017, 30, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Butera, A.; Gallo, S.; Maiorani, C.; Molino, D.; Chiesa, A.; Preda, C.; Esposito, F.; Scribante, A. Probiotic alternative to chlorhexidine in periodontal therapy: Evaluation of clinical and microbiological parameters. Microorganisms 2020, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Gallo, S.; Pascadopoli, M.; Maiorani, C.; Milone, A.; Alovisi, M.; Scribante, A. Paraprobiotics in non-surgical periodontal therapy: Clinical and microbiological aspects in a 6-month follow-up domiciliary protocol for oral hygiene. Microorganisms 2022, 10, 337. [Google Scholar] [CrossRef]
- Yachida, S.; Mizutani, S.; Shiroma, H.; Shiba, S.; Nakajima, T.; Sakamoto, T.; Watanabe, H.; Masuda, K.; Nishimoto, Y.; Kubo, M.; et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 2019, 25, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Marino, P.J.; Wise, M.P.; Smith, A.; Marchesi, J.R.; Riggio, M.P.; Lewis, M.A.O.; Williams, D.W. Community analysis of dental plaque and endotracheal tube biofilms from mechanically ventilated patients. J. Crit. Care 2017, 39, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
(a) | |||||
Species | Cut Off (%) | Sensitivity | Specificity | Likelihood Ratio | AUR |
AM420132_s | 0.002 | 0.600 | 1.000 | - | 0.800 |
Atopobium parvulum | 1.163 | 0.800 | 0.600 | 2.000 | 0.760 |
CAGY_s | 0.076 | 0.800 | 0.400 | 1.333 | 0.760 |
Campylobacter gracilis | 0.002 | 0.800 | 0.800 | 4.000 | 0.800 |
Dialister invisus | 0.019 | 1.000 | 0.800 | 5.000 | 0.920 |
Dialister pneumosintes | 0.007 | 0.800 | 1.000 | - | 0.840 |
Fusobacterium nucleatum group | 0.103 | 0.800 | 0.800 | 4.000 | 0.880 |
Porphyromonas endodontalis | 0.010 | 0.800 | 0.800 | 4.000 | 0.780 |
Porphyromonas gingivalis | 0.005 | 1.000 | 0.800 | 5.000 | 0.960 |
Prevotella oris | 0.002 | 0.800 | 0.800 | 4.000 | 0.840 |
Shuttleworthia satelles | 0.002 | 0.800 | 0.800 | 4.000 | 0.800 |
Streptococcus anginosus group | 0.003 | 1.000 | 0.800 | 5.000 | 0.960 |
Tannerella forsythia | 0.008 | 0.600 | 1.000 | - | 0.760 |
(b) | |||||
Species | Cut Off (%) | Sensitivity | Specificity | Likelihood Ratio | AUR |
Actinomyces oris | 0.006 | 0.600 | 1.000 | - | 0.760 |
Actinomyces_uc | 0.111 | 0.800 | 0.800 | 4.000 | 0.840 |
Atopobium parvulum | 1.365 | 0.800 | 1.000 | - | 0.920 |
Bacteroides coprocola | 0.001 | 0.600 | 1.000 | - | 0.800 |
Bifidobacterium longum group | 0.011 | 0.600 | 1.000 | - | 0.800 |
CAGY_s | 0.122 | 0.800 | 0.600 | 2.000 | 0.800 |
Enterococcus faecalis | 0.004 | 0.800 | 0.800 | 4.000 | 0.780 |
Fusobacterium nucleatum group | 0.078 | 0.800 | 0.800 | 4.000 | 0.800 |
Prevotella denticola | 0.005 | 0.800 | 0.800 | 4.000 | 0.800 |
Prevotella_uc | 0.024 | 0.800 | 0.600 | 2.000 | 0.760 |
Porphyromonas gingivalis | 0.007 | 0.800 | 0.800 | 4.000 | 0.860 |
Prevotella oris | 0.007 | 0.600 | 1.000 | - | 0.760 |
Shuttleworthia satelles | 0.001 | 0.600 | 1.000 | - | 0.800 |
Slackia exigua | 0.004 | 0.600 | 1.000 | - | 0.760 |
Streptococcus anginosus group | 0.012 | 0.600 | 1.000 | - | 0.780 |
Streptococcus mutans | 0.004 | 0.600 | 1.000 | - | 0.760 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nomura, Y.; Inai, Y.; Shimpo, Y.; Okada, A.; Yamamoto, Y.; Sogabe, K.; Wada, N.; Hanada, N. Incidence of Postoperative Pneumonia and Oral Microbiome for Patients with Cancer Operation. Appl. Sci. 2022, 12, 2920. https://doi.org/10.3390/app12062920
Nomura Y, Inai Y, Shimpo Y, Okada A, Yamamoto Y, Sogabe K, Wada N, Hanada N. Incidence of Postoperative Pneumonia and Oral Microbiome for Patients with Cancer Operation. Applied Sciences. 2022; 12(6):2920. https://doi.org/10.3390/app12062920
Chicago/Turabian StyleNomura, Yoshiaki, Yuko Inai, Yudai Shimpo, Ayako Okada, Yuko Yamamoto, Kaoru Sogabe, Naohisa Wada, and Nobuhiro Hanada. 2022. "Incidence of Postoperative Pneumonia and Oral Microbiome for Patients with Cancer Operation" Applied Sciences 12, no. 6: 2920. https://doi.org/10.3390/app12062920
APA StyleNomura, Y., Inai, Y., Shimpo, Y., Okada, A., Yamamoto, Y., Sogabe, K., Wada, N., & Hanada, N. (2022). Incidence of Postoperative Pneumonia and Oral Microbiome for Patients with Cancer Operation. Applied Sciences, 12(6), 2920. https://doi.org/10.3390/app12062920