Macronutrients, Amino and Fatty Acid Composition, Elements, and Toxins in High-Protein Powders of Crickets, Arthrospira, Single Cell Protein, Potato, and Rice as Potential Ingredients in Fermented Food Products
Abstract
:1. Introduction
2. Materials and Methods
- Materials
- Methods
- Protein content
- Total fiber content
- Dry matter/moisture
- Ash content
- Fat content
- Carbohydrate content
- Amino acids composition
- Fatty acids composition
- Elements
- Contamination by mycotoxins
- Statistical analysis
3. Results
3.1. Nutritional Value
3.2. Amino Acids Composition
3.3. Fatty Acid Composition
3.4. Element Content
3.5. Toxins Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Oliveira, P.; Fraga-Corral, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Solutions for the Sustainability of the Food Production and Consumption System. Crit. Rev. Food Sci. Nutr. 2020, 62, 1765–1781. [Google Scholar] [CrossRef]
- van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects. Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013; Volume 171, ISBN 9789251075951. [Google Scholar]
- Aiking, H. Protein Production: Planet, Profit, plus People? Am. J. Clin. Nutr. 2014, 100, 483S–489S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The Future of Food and Agriculture–Alternative Pathways to 2050; FAO: Rome, Italy, 2018; ISBN 9789251301586. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of The United Nations: Rome, Italy, 2006; ISBN 9789251055717. [Google Scholar]
- Flachowsky, G.; Meyer, U.; Südekum, K.H. Land Use for Edible Protein of Animal Origin—A Review. Animals 2017, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/Food Debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Pimentel, D.; Pimentel, M. Sustainability of Meat-Based and Plant-Based Diets and the Environment. Am. J. Clin. Nutr. 2003, 78, 660–663. [Google Scholar] [CrossRef] [Green Version]
- Saari, U.A.; Herstatt, C.; Tiwari, R.; Dedehayir, O.; Mäkinen, S.J. The Vegan Trend and the Microfoundations of Institutional Change: A Commentary on Food Producers’ Sustainable Innovation Journeys in Europe. Trends Food Sci. Technol. 2021, 107, 161–167. [Google Scholar] [CrossRef]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Food Processing for the Improvement of Plant Proteins Digestibility. Crit. Rev. Food Sci. Nutr. 2019, 60, 3367–3386. [Google Scholar] [CrossRef]
- Nasseri, A.T.; Morowvat, M.H.; Amini, R.S.; Ghasemi, Y. Single Cell Protein: Production and Process. Am. J. Food Technol. 2011, 6, 103–116. [Google Scholar] [CrossRef]
- Bueschke, M.; Gramza-Michałowska, A.; Kubiak, T.; Kulczyński, B. Alternatywne Źródła Białka w Żywieniu Człowieka. Zesz. Nauk. SGGW W Warszawie-Probl. Rol. Swiat. 2017, 17, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Adedayo, M.R.; Ajiboye, E.A.; Akintunde, J.K.; Odaibo, A. Single Cell Proteins: As Nutritional Enhancer. Adv. Appl. Sci. Res. 2011, 2, 396–406. [Google Scholar]
- Tan, H.S.G.; Fischer, A.R.H.; Tinchan, P.; Stieger, M.; Steenbekkers, L.P.A.; van Trijp, H.C.M. Insects as Food: Exploring Cultural Exposure and Individual Experience as Determinants of Acceptance. Food Qual. Prefer. 2015, 42, 78–89. [Google Scholar] [CrossRef]
- Van Thielen, L.; Vermuyten, S.; Storms, B.; Rumpold, B.; Van Campenhout, L. Consumer Acceptance of Foods Containing Edible Insects in Belgium Two Years after Their Introduction to the Market. J. Insects Food Feed 2019, 5, 35–44. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef] [Green Version]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Tang, G.; Suter, P.M. Vitamin A, Nutrition, and Health Values of Algae: Spirulina, Chlorella, and Dunaliella. J. Pharm. Nutr. Sci. 2011, 1, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Kalpana, K.; Kusuma, D.L.; Lal, P.R.; Khanna, G.L. Impact of Spirulina on Exercise Induced Oxidative Stress and Post Exercise Recovery Heart Rate of Athletes in Comparison to a Commercial Antioxidant. Food Nutr. J. 2017, 4, 139. [Google Scholar] [CrossRef]
- Grahl, S.; Strack, M.; Mensching, A.; Mörlein, D. Alternative Protein Sources in Western Diets: Food Product Development and Consumer Acceptance of Spirulina-Filled Pasta. Food Qual. Prefer. 2020, 84, 103933. [Google Scholar] [CrossRef]
- Day, L. Proteins from Land Plants-Potential Resources for Human Nutrition and Food Security. Trends Food Sci. Technol. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- Waglay, A.; Achouri, A.; Karboune, S.; Zareifard, M.R.; L’Hocine, L. Pilot Plant Extraction of Potato Proteins and Their Structural and Functional Properties. LWT 2019, 113, 108275. [Google Scholar] [CrossRef]
- Hoehnel, A.; Axel, C.; Bez, J.; Arendt, E.K.; Zannini, E. Comparative Analysis of Plant-Based High-Protein Ingredients and Their Impact on Quality of High-Protein Bread. J. Cereal Sci. 2019, 89, 102816. [Google Scholar] [CrossRef]
- Levy, R.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. Utilization of High-Pressure Homogenization of Potato Protein Isolate for the Production of Dairy-Free Yogurt-like Fermented Product. Food Hydrocoll. 2021, 113, 106442. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. The Composition, Extraction, Functionality and Applications of Rice Proteins: A Review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Małecki, J.; Tomasevic, I.; Djekic, I.; Sołowiej, B.G. The Effect of Protein Source on the Physicochemical, Nutritional Properties and Microstructure of High-Protein Bars Intended for Physically Active People. Foods 2020, 9, 1467. [Google Scholar] [CrossRef]
- Ustunol, Z. Overview of Food Proteins. Appl. Food Protein Chem. 2014, 9781119944, 5–9. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Davies, M.G.; Thomas, A.J. An Investigation of Hydrolytic Techniques for the Amino Acid Analysis of Foodstuffs. J. Sci. Food Agric. 1973, 24, 1525–1540. [Google Scholar] [CrossRef] [PubMed]
- Schram, E.; Moore, S.; Bigwood, E.J. Chromatographic Determination of Cystine as Cysteic Acid. Biochem. J. 1954, 57, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Sławiński, P.; Tyczkowska, K. Hydroliza Prób Materiału Biologicznego Do Oznaczania Tryptofanu. Roczn. Technol. Chemii Żywn. 1974, 23, 155. [Google Scholar]
- Liestianty, D.; Rodianawati, I.; Arfah, R.A.; Assa, A.; Patimah; Sundari; Muliadi. Nutritional Analysis of Spirulina Sp to Promote as Superfood Candidate. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012031. [Google Scholar] [CrossRef]
- Regulation (Ec) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1924&from=pl (accessed on 1 November 2022).
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of Sex on the Nutritional Value of House Cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Lima, R.C.; Maia, M.R.G.; Almeida, A.A.; Fonseca, A.J.M.; Cabrita, A.R.J.; Cunha, L.M. Impact of Defatting Freeze-Dried Edible Crickets (Acheta Domesticus and Gryllodes Sigillatus) on the Nutritive Value, Overall Liking and Sensory Profile of Cereal Bars. LWT 2019, 113, 108335. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; World Health Organization; United Nations University. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Joy, J.M.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; de Souza, E.O.; Wilson, S.M.; Kalman, D.S.; Dudeck, J.E.; Jäger, R. The Effects of 8 Weeks of Whey or Rice Protein Supplementation on Body Composition and Exercise Performance. Nutr. J. 2013, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, E. Evaluating the Functional Characteristics of Certain Insect Flours (Non-Defatted/Defatted Flour) and Their Protein Preparations. Molecules 2022, 27, 6339. [Google Scholar] [CrossRef]
- Shkembi, B.; Huppertz, T. Calcium Absorption from Food Products: Food Matrix Effects. Nutrients 2022, 14, 180. [Google Scholar] [CrossRef]
- Vasilescu, M. Magnesium Supplementation in Top Athletes-Effects and Recommendations Supplements for Top Athletes View Project. J. Rom. Sports Med. Soc. 2015, 11, 2482–2494. [Google Scholar]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Dietary Reference Intakes for Sodium and Potassium; Stallings, V.A., Harrison, M., Oria, M., Eds.; National Academies Press: Washington, DC, USA, 2019; ISBN 978-0-309-48834-1. [Google Scholar]
- Badenhorst, C.E.; Goto, K.; Brien, W.J.O.; Sims, S.; Badenhorst, C.E.; Goto, K.; Brien, W.J.O.; Sims, S.; Badenhorst, C.E. Iron Status in Athletic Females, a Shift in Perspective on an Old Paradigm. J. Sports Sci. 2021, 39, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C. Iron metabolism and its disorders. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouřimská, L.; Adámková, A. Nutritional and Sensory Quality of Edible Insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Üstün-Aytekin, Ö.; Çoban, I.; Aktaş, B. Nutritional Value, Sensory Properties, and Antioxidant Activity of a Traditional Kefir Produced with Arthrospira Platensis. J. Food Process Preserv. 2022, 46, e16380. [Google Scholar] [CrossRef]
- Gaasbeek, A.; Meinders, A.E. Hypophosphatemia: An Update on Its Etiology and Treatment. Am. J. Med. 2005, 118, 1094–1101. [Google Scholar] [CrossRef]
- FAO; FAOLEX. Regulation (EC) No 1881/2006 of the European Parliament and the Council of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; FAO: Rome, Italy, 2006. [Google Scholar]
- da Luz, S.R.; Villanova, F.A.; Rockembach, C.T.; Ferreira, C.D.; Dallagnol, L.J.; Luis Fernandes Monks, J.; de Oliveira, M. Reduced of Mycotoxin Levels in Parboiled Rice by Using Ozone and Its Effects on Technological and Chemical Properties. Food Chem. 2022, 372, 131174. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
Edible Insects | Algae | SCP | Potato | Rice | WPC80 (Control) | |
---|---|---|---|---|---|---|
[g/100 g] | ||||||
Protein | 61.90 | 59.94 | 73.20 | >81.30 | >81.30 | 73.50 |
Fat | 23.10 | 4.88 | 3.40 | <0.50 | 7.00 | 4.90 |
Carbohydrates | 6.90 | 14.99 | 17.30 | 9.70 | 5.00 | 12.70 |
Fiber | 4.80 | 4.19 | 8.20 | 3.40 | 4.30 | 3.60 |
Ash | 4.42 | 12.60 | 2.36 | 3.13 | 0.82 | 2.48 |
Dry mass | 96.30 | 92.45 | 96.30 | 94.10 | 94.10 | 93.60 |
Energy [kcal/kJ] | 473/1981 | 335/1417 | 377/1592 | 357/1516 | 399/1687 | 382/1614 |
Amino Acid | Edible Insects | Algae | SCP | Potato | Rice | WPC80 (Control) | WHO/FAO/UNU Pattern |
---|---|---|---|---|---|---|---|
[mg/g] | |||||||
Aspartic acid | 64.40 b ± 0.17 | 56.70 a ± 0.17 | 68.40 c ± 0.17 | 104.00 f ± 0.87 | 80.60 e ± 0.40 | 83.90 e ± 0.40 | |
Threonine * | 27.70 a ± 0.20 | 28.60 b ± 0.17 | 33.50 d ± 0.36 | 64.60 f ± 0.17 | 31.50 c ± 0.26 | 56.20 e ± 0.17 | 23.00 |
Serine | 37.70 c ± 0.17 | 29.70 b ± 0.17 | 28.70 a ± 0.20 | 50.30 e ± 0.26 | 49.70 e ± 0.36 | 42.80 d ± 0.17 | |
Glutamic acid | 91.60 a ± 0.10 | 92.20 a ± 0.17 | 104.80 b ± 0.30 | 116.50 c ± 0.26 | 171.00 e ± 0.26 | 149.60 d ± 0.20 | |
Proline | 2.38 e ± 0.03 | 2.16 d ± 0.01 | 1.59 a ± 0.01 | 3.28 f ± 0.01 | 2.11 c ± 0.02 | 1.97 b ± 0.02 | |
Glycine | 35.40 d ± 0.10 | 28.50 b ± 0.17 | 33.00 c ± 0.20 | 35.10 d ± 0.26 | 38.00 e ± 0.10 | 14.30 a ± 0.20 | |
Alanine | 59.70 e ± 0.17 | 47.10 b ± 0.26 | 70.70 f ± 0.10 | 55.20 d ± 0.20 | 52.90 c ± 0.17 | 40.80 a ± 0.17 | |
Cysteine * | 8.22 b ± 0.03 | 8.43 b ± 0.01 | 6.69 a ± 0.02 | 8.31 b ± 0.02 | 23.10 c ± 0.17 | 27.90 d ± 0.10 | 6.00 |
Valine * | 39.60 b ± 0.17 | 35.40 a ± 0.17 | 44.60 c ± 0.17 | 45.20 d ± 0.26 | 51.60 e ± 0.30 | 45.20 d ± 0.17 | 39.00 |
Sulf. Methionine * | 16.20 a ± 0.10 | 19.10 b ± 0.10 | 23.60 d ± 0.17 | 27.20 e ± 0.17 | 27.60 e ± 0.26 | 21.90 c ± 0.17 | 16.00 |
Isoleucine * | 28.20 a ± 0.10 | 30.00 b ± 0.17 | 30.70 c ± 0.17 | 40.00 e ± 0.17 | 34.30 d ± 0.20 | 45.30 f ± 0.20 | 30.00 |
Leucine * | 53.60 b ± 0.17 | 49.80 a ± 0.17 | 55.80 c ± 0.20 | 80.40 f ± 0.26 | 69.10 d ± 0.17 | 79.60 e ± 0.36 | 59.00 |
Tyrosine | 34.20 c ± 0.26 | 25.20 b ± 0.17 | 21.50 a ± 0.10 | 50.80 e ± 0.50 | 44.40 d ± 0.26 | 25.40 b ± 0.10 | |
Phenylalanine * | 26.00 a ± 0,00 | 26.50 b ± 0.17 | 28.20 c ± 0.17 | 52.30 e ± 0.10 | 46.60 d ± 0.20 | 25.90 a ± 0.10 | 30.00 |
Histidine * | 17.60 d ± 0.05 | 10.20 a ± 0.17 | 16.30 c ± 0.10 | 18.50 e ± 0.20 | 21.60 f ± 0.17 | 14.50 b ± 0.10 | 15.00 |
Lysine * | 41.20 c ± 0.17 | 27.80 a ± 0.26 | 116.20 f ± 0.26 | 63.60 d ± 0.44 | 30.10 b ± 0.17 | 68.40 e ± 0.10 | 45.00 |
Arginine | 49.70 e ± 0.17 | 40.90 c ± 0.17 | 47.00 d ± 0.10 | 38.40 b ± 0.26 | 80.60 f ± 0.17 | 19.60 a ± 1.82 | |
Tryptophan * | 27.80 c ± 0.26 | 26.80 b ± 0.10 | 26.00 a ± 0.17 | 27.40 c ± 0.17 | 31.80 d ± 0.20 | 31.50 d ± 0.10 | 6.00 |
Total essential amino acids | 286.12 | 272.63 | 403.09 | 478.31 | 367.30 | 416.40 | 269.00 |
Fatty Acid | Edible Insects | Algae | SCP | Potato | Rice | WPC80 (Control) |
---|---|---|---|---|---|---|
[g/100 g] | ||||||
C6:0 | 0.0004 | 0.0004 | 0.000002 | 0.0003 | 0.0005 | |
C8:0 | 0.001 | 0.001 | 0.00003 | 0.001 | 0.001 | |
C10:0 | 0.0004 | 0.002 | 0.00003 | 0.0003 | 0.002 | |
C12:0 | 0.015 | 0.001 | 0.002 | 0.00002 | 0.0002 | 0.002 |
C14:0 | 0.109 | 0.016 | 0.018 | 0.0001 | 0.002 | 0.007 |
C14:1n5 | 0.004 | 0.0004 | ||||
C15:0 | 0.017 | 0.001 | 0.002 | 0.0002 | 0.001 | |
C16:0 | 5.515 | 0.397 | 0.389 | 0.001 | 0.054 | 0.032 |
C16:1n7 | 0.111 | 0.042 | 0.001 | 0.001 | ||
C17:0 | 0.048 | 0.003 | 0.0002 | |||
C17:1n7 | 0.013 | |||||
C18:0 | 2.449 | 0.044 | 0.031 | 0.0004 | 0.012 | |
C18:1n9c + C18:1n9t | 4.735 | 0.034 | 0.383 | 0.001 | 0.039 | 0.0226 |
C18:2n6c + C18:2n6t | 6.742 | 0.119 | 0.107 | 0.0001 | 0.014 | |
C18:3n6 (gamma) | 0.006 | 0.258 | ||||
C18:3n3 (alpha) | 0.375 | 0.0002 | 0.012 | |||
C20:0 | 0.071 | 0.001 | 0.001 | 0.001 | ||
C20:1n15 | 0.008 | |||||
C20:2n6 | 0.006 | 0.002 | ||||
C20:3n6 | 0.003 | |||||
C20:4n6 | 0.001 | 0.001 | ||||
C22:0 | 0.013 | 0.001 | 0.001 | |||
C22:1n9 | 0.034 | |||||
C22:2n6 | 0.027 | 0.001 | 0.002 | 0.0005 | ||
C23:0 | 0.0004 | 0.002 | ||||
C24:0 | 0.004 | 0.001 | 0.003 | 0.001 | ||
SFA | 8.241 | 0.466 | 0.452 | 0.002 | 0.072 | 0.0453 |
MUFA | 4.892 | 0.076 | 0.396 | 0.001 | 0.040 | 0.0243 |
PUFA | 7.157 | 0.384 | 0.122 | 0.001 | 0.015 | 0.0000 |
n-3 | 0.375 | 0.0002 | 0.012 | 0.000 | 0.000 | 0.0000 |
n-6 | 6.782 | 0.384 | 0.110 | 0.001 | 0.015 | 0.0000 |
n-9 | 4.769 | 0.034 | 0.383 | 0.001 | 0.039 | 0.0226 |
Element | Edible Insect | Algae | SCP | Potato | Rice | WPC80 (Control) |
---|---|---|---|---|---|---|
[mg/kg] | ||||||
Ca | 1590 c ± 46 | 1820 d ± 4.0 | 376 b ± 4.0 | 14.4 a ± 0.3 | 48.9 a ± 1.9 | 4180 e ± 22 |
Mg | 1090 e ± 26 | 2980 f ± 7.0 | 573 c ± 3.0 | 106 b ± 4.0 | 68.2 a ± 0.2 | 618 d ± 1.0 |
K | 11900 e ± 44 | 18,700 f ± 137 | 794 b ± 3.0 | 2180 c ± 4.0 | 94.7 a ± 0.4 | 4230 d ± 4.0 |
Na | 3780 d ± 22 | 34,300 f ± 235 | 196 a ± 3.0 | 7600 e ± 70 | 591 b ± 2.0 | 1490 c ± 3.0 |
Fe | 59.2 c ± 0.2 | 257 f ± 2.0 | 77.7 e ± 0.4 | 72.7 d ± 0.5 | 8.49 a ± 0.2 | 19.3 b ± 0.3 |
Cu | 29.7 f ± 0.3 | 0.750 a ± 0.01 | 7.44 e ± 0.03 | 2.29 c ± 0.04 | 6.26 d ± 0.02 | 1.15 b ± 0.02 |
Mn | 43.5 f ± 0.5 | 14.3 d ± 0.2 | 36.3 e ± 0.3 | 2.92 c ± 0.03 | 2.12 b ± 0.03 | <0.1 a |
Se | 0.150 c ± 0.01 | 0.441 e ± 0.01 | 0.135 b ± 0.01 | <0.001 a | 0.170 d ± 0.01 | 0.168 d ± 0.01 |
P | 9000 d ± 143 | 8000 c ± 265 | 10,000 e ± 300 | 600 a ± 17 | 3000 b ± 96 | 3000 b ± 20 |
Toxin | Edible Insect | Algae | SCP | Potato | Rice | WPC80 (Control) |
---|---|---|---|---|---|---|
[µg/kg] | ||||||
Ochratoxin A | 1.60 | <1.50 * | <1.50 * | <1.50 * | <1.50 * | <1.50 * |
Aflatoxin B1 | <0.500 * | <0.500 * | <1.00 * | <0.500 * | 2.09 | <0.500 * |
Aflatoxin B2 | <0.500 * | <0.500 * | <0.500 * | <0.500 * | <0.500 * | <0.500 * |
Aflatoxin G1 | <0.500 * | <0.500 * | <0.500 * | <0.500 * | <0.500 * | <0.500 * |
Aflatoxin G2 | <0.500 * | <0.500 * | <1.00 * | <0.500 * | <0.500 * | <0.500 * |
Total aflatoxins | g.o. | g.o. | g.o. | g.o. | 2.1 | g.o. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grdeń, A.S.; Sołowiej, B.G. Macronutrients, Amino and Fatty Acid Composition, Elements, and Toxins in High-Protein Powders of Crickets, Arthrospira, Single Cell Protein, Potato, and Rice as Potential Ingredients in Fermented Food Products. Appl. Sci. 2022, 12, 12831. https://doi.org/10.3390/app122412831
Grdeń AS, Sołowiej BG. Macronutrients, Amino and Fatty Acid Composition, Elements, and Toxins in High-Protein Powders of Crickets, Arthrospira, Single Cell Protein, Potato, and Rice as Potential Ingredients in Fermented Food Products. Applied Sciences. 2022; 12(24):12831. https://doi.org/10.3390/app122412831
Chicago/Turabian StyleGrdeń, Adam S., and Bartosz G. Sołowiej. 2022. "Macronutrients, Amino and Fatty Acid Composition, Elements, and Toxins in High-Protein Powders of Crickets, Arthrospira, Single Cell Protein, Potato, and Rice as Potential Ingredients in Fermented Food Products" Applied Sciences 12, no. 24: 12831. https://doi.org/10.3390/app122412831
APA StyleGrdeń, A. S., & Sołowiej, B. G. (2022). Macronutrients, Amino and Fatty Acid Composition, Elements, and Toxins in High-Protein Powders of Crickets, Arthrospira, Single Cell Protein, Potato, and Rice as Potential Ingredients in Fermented Food Products. Applied Sciences, 12(24), 12831. https://doi.org/10.3390/app122412831