Antioxidant Potential of Yogurts Produced from Milk of Cows Fed Fodder Supplemented with Herbal Mixture with Regard to Refrigerated Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
Milk Analysis
2.2. Yogurt Production
2.3. Analysis of Yogurt
2.3.1. Basic Chemical Composition
2.3.2. Acidity
2.3.3. Water Acidity
2.4. Determination of Antioxidant Capacity of Milk and Yogurts
2.5. Statistical Analysis
3. Results and Discussion
3.1. Basic Physicochemical Parameters in Milk
3.2. Antioxidant Activity of Milk and Yogurts
3.3. Acidity of Yogurts during 21 Days of Storage
3.4. Water Activity of Yogurts during 21 Days of Storage
3.5. Basic Chemical Composition of Yogurts during 21 Days of Storage
3.6. Antioxidant Activity of Yogurts during 21 Days of Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wajs, J.; Brodziak, A.; Król, J. Shaping the physicochemical, functional, microbiological and sensory properties of yoghurts using plant additives. Foods 2023, 12, 1275. [Google Scholar] [CrossRef] [PubMed]
- Aryana, K.J.; Olson, D.W. A 100-Year Review: Yogurt and other cultured dairy products. J. Dairy Sci. 2017, 100, 9987–10013. [Google Scholar] [CrossRef]
- Hadjimbei, E.; Botsaris, G.; Chrysostomou, S. Beneficial effects of yoghurts and probiotic fermented milks and their functional food potential. Foods 2022, 11, 2691. [Google Scholar] [CrossRef]
- Ogunyemi, O.; Gyebi, G.; Shaibu, R.; Fabusiwa, M.; Olaiya, C. Antioxidant, nutritional, and physicochemical quality of yoghurt produced from a milk-based fermentation mix enhanced with food spices. Croat. J. Food Sci. Technol. 2021, 13, 201–209. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Chavez-García, S.N.; García-Flores, L.A.; Martinez-Medina, G.A.; Ramos-González, R.; Prado-Barragán, L.A.; Flores-Gallegos, A.C. Chapter 10—Bioactive peptides from fermented milk products. In Enzymes Beyond Traditional Applications in Dairy Science and Technology; Academic Press: Cambridge, MA, USA, 2023; pp. 289–304. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, P.; Chen, X. Bioactive peptides derived from fermented foods: Preparation and biological activities. J. Funct. Foods 2023, 101, 105422. [Google Scholar] [CrossRef]
- Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant activity of milk and dairy product. Animals 2022, 12, 245. [Google Scholar] [CrossRef]
- Mituniewicz-Małek, A.; Szkolnicka, K.; Dmytrów, I.; Ziarno, M.; Witczak, M.; Szewczuk, M.A.; Petrykowski, S.; Strzałkowska, N. The viability of probiotic monoculture and quality of goat’s and cow’s bioyogurt. Anim. Sci. Pap. Rep. 2022, 40, 463–478. [Google Scholar]
- Cais-Sokolińska, D.; Walkowiak-Tomczak, D. Consumer-perception, nutritional, and functional studies of a yogurt with restructured elderberry juice. J. Dairy Sci. 2021, 104, 1318–1335. [Google Scholar] [CrossRef]
- Farag, M.A.; Saleh, H.A.; El Ahmady, S.; Elmassry, M. Dissecting yogurt: The impact of milk types, probiotics and selected additives on yoghurt quality. Food Rev. Int. 2021, 38, 634–650. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: A narrative review of evidence. Nutr. Res. Rev. 2018, 31, 52–70. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; Youssef, A.M. Potential application of herbs and spices and their effects in functional dairy products. Heliyon 2019, 5, e01989. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Santos, J.S.; Salem, R.D.S.; Mortazavian, A.M.; Rocha, R.S.; Cruz, A.G. Effects of herbal extracts on quality traits of yogurts, cheeses, fermented milks, and ice creams: A technological perspective. Curr. Opin. Food Sci. 2018, 19, 1–7. [Google Scholar] [CrossRef]
- Mohamed, A.I.A.; Alqah, H.A.S.; Saleh, A.; Al-Juhaimi, F.Y.; Babiker, E.E.; Ghafoor, K.; Hassan, A.B.; Osman, M.A.; Fickak, A. Physicochemical quality attributes and antioxidant properties of set-type yogurt fortifed with argel (Solenostemma argel Hayne) leaf extract. LWT Food Sci. Technol. 2021, 137, 110389. [Google Scholar] [CrossRef]
- Cedeño-Pinos, C.; Jiménez-Monreal, A.M.; Quílez, M.; Bañón, S. Polyphenol extracts from sage (Salvia lavandulifolia Vahl) by-products as natural antioxidants for pasteurised chilled yoghurt sauce. Antioxidants 2023, 12, 364. [Google Scholar] [CrossRef] [PubMed]
- Rashwan, A.K.; Ahmed, I.O.; Wei, C. Natural nutraceuticals for enhancing yogurt properties: A review. Environ. Chem. Lett. 2023, 21, 1907–1931. [Google Scholar] [CrossRef]
- Suharto, E.L.S.; Arief, I.I.; Taufik, E. Quality and antioxidant activity of yogurt supplemented with roselle 470 during cold storage. Med. Pet. 2016, 39, 82–89. [Google Scholar] [CrossRef]
- Kabir, M.R.; Mehedi, H.M.; Rakibul, I.M.; Redwan, H.A.; Kamrul, H.S.M. Formulation of yogurt with banana peel extracts to enhance storability and bioactive properties. J. Food Process Preserv. 2021, 45, e15191. [Google Scholar] [CrossRef]
- Mohammadi-Gouraji, E.; Soleimanian-Zad, S.; Ghiaci, M. Phycocyanin-enriched yogurt and its antibacterial and physicochemical properties during 21 days of storage. LWT Food Sci. Technol. 2019, 102, 230–236. [Google Scholar] [CrossRef]
- Stobiecka, M.; Król, J.; Brodziak, A.; Klebaniuk, R.; Kowalczuk-Vasiliev, E. Effects of supplementation with an herbal mixture on the antioxidant capacity of milk. Animals 2023, 13, 2013. [Google Scholar] [CrossRef]
- Odhaib, K.J.; Al-Hajjar, Q.N.; Alallawee, M.H.A. Incorporation of herbal plants in the diet of ruminants: Effect on meat quality. Iraqi J. Vet. Med. 2021, 45, 22–30. [Google Scholar] [CrossRef]
- Buchilina, A.K.; Aryana, K. Physicochemical and microbiological characteristics of camel milk yogurt as infuenced by monk fruit sweetener. J. Dairy Sci. 2021, 104, 1484–1493. [Google Scholar] [CrossRef]
- Paskudska, A.; Kołodziejczyk, D.; Socha, S. The use of herbs in animal nutrition. Acta Sci. Pol. Zootech. 2018, 17, 3–14. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, No. 998.06, 17th ed.; AOAC International: Arlington, VA, USA, 2000; Available online: http://m.wdfxw.net/goDownFiles.aspx?key=12212363 (accessed on 13 July 2023).
- PN-68/A-86122. Milk. Research Methods. Available online: https://sklep.pkn.pl/ (accessed on 13 July 2023).
- PN-EN ISO 8261:2002; Milk and Milk Products—General Guidance for the Preparation of Test Samples, Initial Suspensions and Decimal Dilutions for Microbiological Examination. Available online: https://sklep.pkn.pl/ (accessed on 13 July 2023).
- PN-EN ISO 4833-2:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 Degrees C by the Surface Plating Technique. Available online: https://sklep.pkn.pl/ (accessed on 13 July 2023).
- Glibowski, P.; Rybak, P. Rheological and sensory properties of stirred yoghurt with inulin-type fructans. Int. J. Dairy Technol. 2016, 69, 122–128. [Google Scholar] [CrossRef]
- Brodziak, A.; Król, J.; Matwijczuk, A.; Czernecki, T.; Glibowski, P.; Wlazło, Ł.; Litwińczuk, A. Effect of sea buckthorn (Hippophae rhamnoides L.) mousse on properties of probiotic yoghurt. Appl. Sci. 2021, 11, 545. [Google Scholar] [CrossRef]
- PN-EN ISO 8968-1:2014; Milk and Milk Products—Determination of Nitrogen Content—Part 1: Kjeldahl Principle and Crude Protein Calculation. Available online: https://sklep.pkn.pl/ (accessed on 13 July 2023).
- PN-A-86061:2006; Milk and Milk Products. Fermented Milk. Available online: https://sklep.pkn.pl/ (accessed on 13 July 2023).
- IDF/ISO Standard; Yogurt. Determination of Titratable Acidity; No. 150. ISO: Brussels, Belgium, 1991. Available online: https://store.fil-idf.org/publications/?product_cat=standards (accessed on 13 July 2023).
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sahin, S.; Isik, E.; Aybastier, O.; Demir, C. Orthogonal signal correction-based prediction of total antioxidant activity using partial least squares regression from chromatograms. J. Chemometr. 2012, 26, 390–399. [Google Scholar] [CrossRef]
- Bilik, K. The influence of different doses of TMR on the quality of milk of phf cows and products made from it. Anim. Prod. Rev. 2014, 82, 3–6. [Google Scholar]
- PN-A-86002:1999; Raw Milk for Purchase—Requirements and Tests. Available online: https://sklep.pkn.pl/ (accessed on 13 July 2023).
- Commission Regulation (EC) No. 1662/2006 of 6 November 2006 Amending Regulation (EC) No 853/2004 of the European Parliament and of the Council Laying Down Specific Hygiene Rules for Food of Animal Origin. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R1662 (accessed on 13 July 2023).
- Aloğlu, H.S.; Öner, Z. Determonation of antioxinadt activity of bioactive peptide fractions obtained from yogurt. J. Dairy Sci. 2011, 94, 5305–5314. [Google Scholar] [CrossRef] [PubMed]
- Sabokbar, N.; Khodaiyan, F.; Moosavi-Nasab, M. Optimization of processing conditions to improve antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2015, 52, 3422–3432. [Google Scholar] [CrossRef]
- Yilmaz-Ersan, L.; Ozcan, T.; Akpinar-Bayizit, A.; Sahin, S. Comparison of antioxidant capacity of cow and ewe milk kefirs. J. Dairy Sci. 2018, 101, 3788–3798. [Google Scholar] [CrossRef]
- Walkenhorst, M.; Leiber, F.; Maeschli, A.; Kapp, A.N.; Spengler-Neff, A.; Faleschini, M.T.; Garo, E.; Hamburger, M.; Potterat, O.; Mayer, P.; et al. A multicomponent herbal feed additive improves somatic cell counts in dairy cows—A two stage, multicentre, placebo-controlled long-term on-farm trial. J. Anim. Physiol. Anim. Nutr. 2020, 104, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Radzikowski, D.; Milczarek, A.; Janocha, A.; Ostaszewska, U.; Niedziałek, G. Feed additives in the diet of high-producing dairy cows. Acta Sci. Pol. Zootech. 2020, 19, 5–16. [Google Scholar] [CrossRef]
- Oh, J.; Wall, E.H.; Bravo, D.M.; Hristov, A.N. Host-mediated effects of phytonutrients in ruminants: A review. J. Dairy Sci. 2017, 100, 5974–5983. [Google Scholar] [CrossRef]
- Szajnar, K.; Znamirowska, A.; Kalicka, D. Effects of various magnesium salts for the production of milk fermented by Bifidobacterium animali ssp. Lactis Bb-12. Int. J. Food Prop. 2019, 22, 1087–1099. [Google Scholar] [CrossRef]
- Brodziak, A.; Król, J.; Barłowska, J.; Teter, A.; Florek, M. Changes in the physicochemical parameters of yoghurts with added whey protein in relation to the starter bacteria strains and storage time. Animals 2020, 10, 1350. [Google Scholar] [CrossRef] [PubMed]
- Gunenc, A.; Khoury, C.; Legault, C.; Mirrashed, H.; Rijke, J.; Hosseinian, F. Seabuckthorn as a novel prebiotic source improves probiotic viability in yogurt. LWT Food Sci. Technol. 2016, 66, 490–495. [Google Scholar] [CrossRef]
- Amadarshanie, D.B.T.; Gunathilaka, T.L.; Silva, R.M.; Navaratne, S.B.; Peiris, L.D.C. Functional and antiglycation properties of cow milk set yogurt enriched with Nyctanthes arbor-tristis L. flower extract. LWT Food Sci. Technol. 2022, 154, 112910. [Google Scholar] [CrossRef]
- Najgebauer-Lejko, D.; Sady, M.; Grega, T.; Walczycka, M. The impact of tea supplementation on microflora, pH and antioxidant capacity of yoghurt. Internat. Dairy J. 2011, 21, 568–574. [Google Scholar] [CrossRef]
- Lisak Jakopović, K.; Repajić, M.; Rumora Samarin, I.; Božanić, B.; Blažić, M.; Barukčić Jurina, I. Fortification of cow milk with moringa oleifera extract: Influence on physicochemical characteristics, antioxidant capacity and mineral content of yoghurt. Fermentation 2022, 8, 545. [Google Scholar] [CrossRef]
- Amirdivani, S.; Baba, A.S. Changes in yogurt fermentation characteristics, and antioxidant potential and in vitro inhibition of angiotensin-1 converting enzyme upon the inclusion of peppermint, dill and basil. LWT Food Sci. Technol. 2011, 44, 1458–1464. [Google Scholar] [CrossRef]
- Shori, A.B. Inclusion of phenolic compounds from different medicinal plants to increase α-amylase inhibition activity and antioxidants in yogurt. J. Taibah Univ. Sci. 2020, 14, 1000–1008. [Google Scholar] [CrossRef]
- Atwaa, E.S.H.; Shahein, M.R.; El-Sattar, E.S.A.; Hijazy, H.H.A.; Albrakati, A.; Elmahallawy, E.K. Bioactivity, physicochemical and sensory properties of probiotic yoghurt made from whole milk powder reconstituted in aqueous fennel extract. Fermentation 2022, 8, 52. [Google Scholar] [CrossRef]
- Olkowski, M.A.; Pluta, A.; Berthold-Pluta, A.; Wiska, J. Water activity of dairy products. Part I. Food Ind. 2012, 66, 31–34. [Google Scholar]
- Anuyahong, T.; Chusak, C.; Adisakwattana, S. Incorporation of anthocyanin-rich riceberry rice in yoghurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. LWT Food Sci. Technol. 2020, 129, 109571. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Liu, R.; Mats, L.; Zhu, H.; Pauls, K.P.; Deng, Z.; Tsao, R. Antioxidant and anti-infammatory polyphenols and peptides of common bean (Phaseolus vulga L.) milk and yogurt in Caco-2 and HT-29 cell models. J. Funct. Foods 2019, 53, 125–135. [Google Scholar] [CrossRef]
- Demirkol, M.; Tarakci, Z. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT Food Sci. Technol. 2018, 97, 770–777. [Google Scholar] [CrossRef]
- Dong, R.; Liao, W.; Xie, J.; Chen, Y.; Peng, G.; Xie, J.; Sun, N.; Liu, S.; Yu, C.; Yu, Q. Enrichment of yogurt with carrot soluble dietary fber prepared by three physical modifed treatments: Microstructure, rheology and storage stability. Innov. Food Sci. Emerg. Technol. 2022, 75, 102901. [Google Scholar] [CrossRef]
- Du, H.; Wang, X.; Yang, H.; Zhu, F.; Tang, D.; Cheng, J.; Liu, X. Changes of phenolic profile and antioxidant activity during cold storage of functional favored yogurt supplemented with mulberry pomace. Food Control 2022, 132, 108554. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Hussein, J.; El-Sayed, S.M.; Youssef, A.M.; El Bana, M.; Latif, Y.A.; Medhat, D. Protective effect of the functional yogurt based on Malva parvifora leaves extract nanoemulsion on acetic acid-induced ulcerative colitis in rats. J. Market Res. 2020, 9, 14500–14508. [Google Scholar] [CrossRef]
- Kowaleski, J.; Quast, L.B.; Steffens, J.; Lovato, F.; dos Santos, L.R.; de Silva, S.Z.; de Souza, D.M.; Felicetti, M.A. Functional yogurt with strawberries and chia seeds. Food Biosci. 2020, 37, 100. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Mujumdar, A.S.; Chang, L. Effect of edible rose (Rosa rugosa cv. Plena) flower extract addition on the physicochemical, rheological, functional and sensory properties of set-type yogurt. Food Biosci. 2021, 43, 101249. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Cui, H.; Fang, J.; Cheng, K.; Mo, J.; Chen, W. Chemical composition, quality attributes and antioxidant activity of stirred-type yogurt enriched with Melastoma dodecandrum Lour fruit powder. Food Funct. 2022, 13, 1579–1592. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.B.; Bonifácio-Lopes, T.; Morais, P.; Miranda, A.; Nunes, J.; Vicente, A.A.; Pintado, M. Incorporation of olive pomace ingredients into yoghurts as a source of fibre and hydroxytyrosol: Antioxidant activity and stability throughout gastrointestinal digestion. J. Food Eng. 2021, 297, 110476. [Google Scholar] [CrossRef]
- Tang, P.L.; Cham, X.Y.; Hou, X.; Deng, J. Potential use of waste cinnamon leaves in stirred yogurt fortification. Food Biosci. 2022, 48, 101838. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; Radwan, H.A.; Elmeligy, A.A.; Hafiz, A.A.; Albrakati, A.; Elmahallawy, E.K. Production of a yogurt drink enriched with golden berry (Physalispubescens L.) juice and its therapeutic effect on hepatitis in rats. Fermentation 2022, 8, 112. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packag. Shelf Life. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Jung, J.; Paik, H.-D.; Yoon, H.J.; Jang, H.J.; Jeewanthi, R.K.C.; Jee, H.-S.; Li, X.; Lee, N.-K.; Lee, S.-K. Physicochemical characteristics and antioxidant capacity in yogurt fortified with red ginseng extract. Korean J. Food Sci. An. 2016, 36, 412–420. [Google Scholar] [CrossRef]
- Martins, M.R.; Arantes, S.; Candeias, F.; Tinoco, M.T.; Cruz-Morais, J. Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J. Ethnopharmacol. 2014, 151, 485–492. [Google Scholar] [CrossRef]
- Shori, A.B.; Baba, A.S. Antioxidant activity and inhibition of key enzymes linked to type-2 diabetes and hypertension by Azadirachta indica-yogurt. J. Saudi Chem. Soc. 2013, 17, 295–301. [Google Scholar] [CrossRef]
Parameter | Control Group | Experimental Group |
---|---|---|
Active acidity (pH) | 6.72 ± 0.04 | 6.73 ± 0.05 |
Potential acidity (°SH) | 6.86 ± 0.10 | 6.82 ± 0.08 |
Dry matter (%) | 13.09 ± 0.20 | 13.19 ± 0.44 |
Total protein (%) | 3.47 ± 0.52 | 3.51 ± 0.62 |
Casein (%) | 2.80 ± 0.41 | 2.85 ± 0.54 |
Fat (%) | 4.27 ± 0.89 | 4.30 ± 0.87 |
Lactose (%) | 4.65 ± 0.17 | 4.72 ± 0.13 |
SCC (thous./mL) | 204 ± 48 | 183 ± 62 |
TMC (thous. CFU/mL) | 7.2 × 104 | 5.5 × 104 |
Method | Milk | Yogurts | ||
---|---|---|---|---|
CM | EM | CY | EY | |
ABTS | 3.02 AX ± 0.26 | 4.03 BX ± 0.23 | 4.98 AY ± 0.28 | 6.87 BY ± 0.86 |
DPPH | 1.14 aX ± 0.15 | 1.25 bX ± 0.18 | 2.52 AY ± 0.16 | 3.26 BY ± 0.28 |
FRAP | 8.97 AX ± 1.13 | 13.1 BX ± 2.05 | 17.13 AY ± 0.65 | 22.58 BY ± 0.98 |
Yogurt Type | Day of Storage | Water Activity | Total Protein (%) | Fat (%) | Dry Matter (%) |
---|---|---|---|---|---|
CY | 0 | 0.939 ± 0.007 | 3.46 b ± 0.19 | 4.27 ± 0.17 | 12.33 B ± 0.19 |
7 | 0.942 ± 0.006 | 3.44 ab ± 0.11 | 4.23 ± 0.11 | 12.25 B ± 0.26 | |
14 | 0.954 ± 0.011 | 3.38 ab ± 0.14 | 4.19 ± 0.14 | 12.06 AB ± 0.28 | |
21 | 0.960 ± 0.008 | 3.25 a ± 0.16 | 4.16 ± 0.15 | 11.58 A ± 0.31 | |
EY | 0 | 0.943 ± 0.010 | 3.52 b ± 0.13 | 4.30 ± 0.09 | 12.38 B ± 0.25 |
7 | 0.949 ± 0.007 | 3.49 ab ± 0.16 | 4.28 ± 0.11 | 12.31 B ± 0.20 | |
14 | 0.955 ± 0.009 | 3.42 ab ± 0.10 | 4.25 ± 0.12 | 12.15 B ± 0.29 | |
21 | 0.961 ± 0.012 | 3.30 a ± 0.15 | 4.20 ± 0.10 | 11.66 A ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant Potential of Yogurts Produced from Milk of Cows Fed Fodder Supplemented with Herbal Mixture with Regard to Refrigerated Storage. Appl. Sci. 2023, 13, 10469. https://doi.org/10.3390/app131810469
Stobiecka M, Król J, Brodziak A. Antioxidant Potential of Yogurts Produced from Milk of Cows Fed Fodder Supplemented with Herbal Mixture with Regard to Refrigerated Storage. Applied Sciences. 2023; 13(18):10469. https://doi.org/10.3390/app131810469
Chicago/Turabian StyleStobiecka, Magdalena, Jolanta Król, and Aneta Brodziak. 2023. "Antioxidant Potential of Yogurts Produced from Milk of Cows Fed Fodder Supplemented with Herbal Mixture with Regard to Refrigerated Storage" Applied Sciences 13, no. 18: 10469. https://doi.org/10.3390/app131810469
APA StyleStobiecka, M., Król, J., & Brodziak, A. (2023). Antioxidant Potential of Yogurts Produced from Milk of Cows Fed Fodder Supplemented with Herbal Mixture with Regard to Refrigerated Storage. Applied Sciences, 13(18), 10469. https://doi.org/10.3390/app131810469