Preliminary Study on the Influence of the Polyphenols of Different Groups on the Digestibility of Wheat Starch, Measured by the Content of Resistant Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Starch–Phenolic Complexes (Conjugates)
2.2. Methods
2.3. Data Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—A review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Törrönen, R.; Sarkkinen, E.; Tapola, N.; Hautaniemi, E.; Kilpi, K.; Niskanen, L. Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br. J. Nutr. 2010, 103, 1094–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanmuang, S.; Nguyen, Q.-A.; Kim, H.-J. Current Research on the Effects of Non-Digestible Carbohydrates on Metabolic Disease. Appl. Sci. 2022, 12, 3768. [Google Scholar] [CrossRef]
- Pico, J.; Bernal, J.; Gómez, M. Wheat bread aroma compounds in crumb and crust: A review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef]
- Ou, J.; Wang, M.; Zheng, J.; Ou, S. Positive and negative effects of polyphenol incorporation in baked foods. Food Chem. 2019, 284, 90–99. [Google Scholar] [CrossRef]
- Sun, L.; Gidley, M.J.; Warren, F.J. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Mol. Nutr. Food Res. 2017, 61, 1700324. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Gidley, M.J.; Warren, F.J. Tea polyphenols enhance binding of porcine pancreatic α-amylase with starch granules but reduce catalytic activity. Food Chem. 2018, 258, 164–173. [Google Scholar] [CrossRef]
- Sun, L.; Warren, F.J.; Gidley, M.J. Soluble polysaccharides reduce binding and inhibitory activity of tea polyphenols against porcine pancreatic α-amylase. Food Hydrocoll. 2018, 79, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, N.; Vittadini, E.; Fogliano, V. Designing food structure to slow down digestion in starch-rich products. Curr. Opin. Food Sci. 2020, 32, 50–57. [Google Scholar] [CrossRef]
- Xiao, J.; Kai, G.; Ni, X.; Yang, F.; Chen, X. Interaction of natural polyphenols with α-amylase in vitro: Molecular property-affinity relationship aspect. Mol. Biosyst. 2011, 7, 1883–1890. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR). Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2019, 206, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Amoako, D.; Awika, J.M. Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose. Curr. Opin. Food Sci. 2016, 8, 14–18. [Google Scholar] [CrossRef]
- Barros, F.; Awika, J.M.; Rooney, L.W. Interaction of Tannins and Other Sorghum Phenolic Compounds with Starch and Effects on in Vitro Starch Digestibility. J. Agric. Food Chem. 2012, 60, 11609–11617. [Google Scholar] [CrossRef] [PubMed]
- Borczak, B.; Sikora, E.; Sikora, M.; Kapusta-Duch, J.; Kutyła-Kupidura, E.M.; Fołta, M. Nutritional properties of wholemeal wheat-flour bread with an addition of selected wild grown fruits. Starch 2016, 68, 675–682. [Google Scholar] [CrossRef]
- Coe, S.; Ryan, L. White bread enriched with polyphenol extracts shows no effect on glycemic response or satiety, yet may increase postprandial insulin economy in healthy participants. Nutr. Res. (N. Y.) 2016, 36, 193–200. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, Y.; Zhou, W. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility. Food Chem. 2016, 196, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; ISBN 978-0-935584-75-2. [Google Scholar]
- Themeier, H.; Hollmann, J.; Neese, U.; Lindhauer, M.G. Structural and morphological factors influencing the quantification of resistant starch II in starches of different botanical origin. Carbohydr. Polym. 2005, 61, 72–79. [Google Scholar] [CrossRef]
- Lal, M.K.; Singh, B.; Sharma, S.; Singh, M.P.; Kumar, A. Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends Food Sci. Technol. 2021, 111, 741–755. [Google Scholar] [CrossRef]
- HEARTS D: Diagnosis and Management of Type 2 Diabetes. Available online: https://www.who.int/publications-detail-redirect/who-ucn-ncd-20.1 (accessed on 14 September 2022).
- Ren, J.; Chen, S.; Li, C.; Gu, Z.; Cheng, L.; Hong, Y.; Li, Z. A two-stage modification method using 1,4-α-glucan branching enzyme lowers the in vitro digestibility of corn starch. Food Chem. 2020, 305, 125441. [Google Scholar] [CrossRef]
- Granfeldt, Y.; Björck, I.; Drews, A.; Tovar, J. An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Eur. J. Clin. Nutr. 1992, 46, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Raigond, P.; Ezekiel, R.; Raigond, B. Resistant starch in food: A review. J. Sci. Food Agric. 2015, 95, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Rastija, V.; Bešlo, D.; Nikolić, S. Two-dimensional quantitative structure–activity relationship study on polyphenols as inhibitors of α-glucosidase. Med. Chem. Res. 2012, 21, 3984–3993. [Google Scholar] [CrossRef]
- Xiao, J.; Ni, X.; Kai, G.; Chen, X. A Review on Structure—Activity Relationship of Dietary Polyphenols Inhibiting α-Amylase. Crit. Rev. Food Sci. Nutr. 2013, 53, 497–506. [Google Scholar] [CrossRef]
- Sun, L.; Warren, F.J.; Gidley, M.J. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends Food Sci. Technol. 2019, 91, 262–273. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Miao, M. Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends Food Sci. Technol. 2020, 104, 190–207. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Lo Piparo, E.; Scheib, H.; Frei, N.; Williamson, G.; Grigorov, M.; Chou, C.J. Flavonoids for Controlling Starch Digestion: Structural Requirements for Inhibiting Human α-Amylase. J. Med. Chem. 2008, 51, 3555–3561. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [Green Version]
- Al-Dabbas, M.M.; Kitahara, K.; Suganuma, T.; Hashimoto, F.; Tadera, K. Antioxidant and α-Amylase Inhibitory Compounds from Aerial Parts of Varthemia iphionoides Boiss. Biosci. Biotechnol. Biochem. 2006, 70, 2178–2184. [Google Scholar] [CrossRef]
- Kawamura-Konishi, Y.; Watanabe, N.; Saito, M.; Nakajima, N.; Sakaki, T.; Katayama, T.; Enomoto, T. Isolation of a New Phlorotannin, a Potent Inhibitor of Carbohydrate-Hydrolyzing Enzymes, from the Brown Alga Sargassum patens. J. Agric. Food Chem. 2012, 60, 5565–5570. [Google Scholar] [CrossRef] [PubMed]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- McDougall, G.J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Different Polyphenolic Components of Soft Fruits Inhibit α-Amylase and α-Glucosidase. J. Agric. Food Chem. 2005, 53, 2760–2766. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Inhibitory effects of chlorogenic acids from green coffee beans and cinnamate derivatives on the activity of porcine pancreas α-amylase isozyme I. Food Chem. 2011, 127, 1532–1539. [Google Scholar] [CrossRef]
Dose | 5 mg (4.76% of Starch Gel) | 10 mg (9.09% of Starch Gel) | 20 mg (16.66% of Starch Gel) |
---|---|---|---|
Wheat with an addition of: | |||
(+)catechin | 4.89 ± 0.0 f,3 | 2.30 ± 0.2 f,2 | 1.93 ± 0.1 b,1 |
epigallocatechin gallate | 2.75 ± 0.4 e,1 | 2.86 ± 0.2 g,1 | 3.40 ± 0.3 e,1 |
hesperidin | 3.52 ± 0.0 b,3 | 1.42 ± 0.0 b,2 | 1.10 ± 0.0 d,1 |
naringenin | 1.91 ± 0.2 a,1 | 2.07 ± 0.1 c,1 | 1.99 ± 0.1 b,1 |
trans-ferulic acid | 4.21 ± 0.2 c,3 | 2.09 ± 0.2 c,2 | 1.38 ± 0.0 a,1 |
p-coumaric acid | 1.71 ± 0.0 a,2 | 0.34 ± 0.1 a,1 | 2.11 ± 0.0 b,3 |
delphinidin-3-O-glucoside (myrtillin) | 1.84 ± 0.1 a,1 | 1.83 ± 0.0 e,1 | 1.32 ± 0.1 a,2 |
cyanidin-3-O-glucoside (kuromanin) | 1.24 ± 0.0 d,1 | 1.09 ± 0.0 d,2 | 1.21 ± 0.1 a,1 |
quercetin | 3.89 ± 0.2 c,3 | 1.41 ± 0.0 b,2 | 0.31 ± 0.0 c,1 |
kaempferol | 3.46 ± 0.4 b,2 | 0.34 ± 0.1 a,1 | 0.39 ± 0.1 c,1 |
Mean values | 2.94 ± 1.23 a | 1.58 ± 0.82 b | 1.51 ± 0.90 b |
Wheat without an addition of polyphenols | 0.27 ± 0.0 | - | - |
5 mg (4.76% of Starch Gel) | 10 mg (9.09% of Starch Gel) | 20 mg (16.66% of Starch Gel) | |
---|---|---|---|
Wheat with an addition of: | |||
Flavanols ((+)catechin, epigallocatechin gallate) | 3.60 ± 1.2 a | 2.48 ± 0.3 c | 2.67 ± 0.8 c |
Flavanones (hesperidin, naringenin) | 2.83 ± 0.9 a | 1.74 ± 0.4 a | 1.54 ± 0.5 a |
Phenolic acids (trans-ferulic acid, p-coumaric acid) | 3.14 ± 1.3 a | 1.21 ± 0.9 a,b | 1.62 ± 0.4 a |
Anthocyanins (myrtillin, kuromanin) | 1.54 ± 0.3 b | 1.46 ± 0.4 a | 1.27 ± 0.1 a |
Flavonols (quercetin, kaempferol) | 3.68 ± 0.4 a | 0.70 ± 0.6 b | 0.35 ± 0.1 b |
Wheat without an addition of polyphenols | 0.27 ± 0.0 | - | - |
Polyphenol | ***** Excellent **** Very Good *** Good ** Satisfactory * Poor | -OH Groups ↑ | -OCH3 Groups ↓ | Double Bond Conjugated with Carbonyl Group ↑ | Glycolysated Form ↓ | Galloyl Moieties ↑ | C = O Bond in Galloyl Moieties ↑ | Additional Benzene Ring ↑ |
---|---|---|---|---|---|---|---|---|
epigallocatechin gallate | ***** | 8 | ⁻ | ⁻ | ⁻ | + | + | + |
(+)-catechin | **** | 5 | ⁻ | ⁻ | ⁻ | ⁻ | ⁻ | ⁻ |
delphinidin-3-O-glucoside | **** | 6 | ⁻ | ⁻ | + | ⁻ | ⁻ | ⁻ |
quercetin | **** | 5 | ⁻ | + | ⁻ | ⁻ | ⁻ | ⁻ |
cyanidin-3-O-glucoside | *** | 5 | ⁻ | ⁻ | + | ⁻ | ⁻ | ⁻ |
hesperidin | *** | 3 | ⁻ | ⁻ | ⁻ | ⁻ | ⁻ | ⁻ |
kaempferol | *** | 4 | ⁻ | + | ⁻ | ⁻ | ⁻ | ⁻ |
naringenin | ** | 3 | ⁻ | ⁻ | ⁻ | ⁻ | ⁻ | ⁻ |
p-coumaric acid | ** | 1 | ⁻ | + | ⁻ | ⁻ | ⁻ | ⁻ |
trans-ferulic acid | * | 1 | + | + | ⁻ | ⁻ | ⁻ | ⁻ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwaśny, D.; Borczak, B.; Sikora, M.; Kapusta-Duch, J. Preliminary Study on the Influence of the Polyphenols of Different Groups on the Digestibility of Wheat Starch, Measured by the Content of Resistant Starch. Appl. Sci. 2022, 12, 10859. https://doi.org/10.3390/app122110859
Kwaśny D, Borczak B, Sikora M, Kapusta-Duch J. Preliminary Study on the Influence of the Polyphenols of Different Groups on the Digestibility of Wheat Starch, Measured by the Content of Resistant Starch. Applied Sciences. 2022; 12(21):10859. https://doi.org/10.3390/app122110859
Chicago/Turabian StyleKwaśny, Dominika, Barbara Borczak, Marek Sikora, and Joanna Kapusta-Duch. 2022. "Preliminary Study on the Influence of the Polyphenols of Different Groups on the Digestibility of Wheat Starch, Measured by the Content of Resistant Starch" Applied Sciences 12, no. 21: 10859. https://doi.org/10.3390/app122110859
APA StyleKwaśny, D., Borczak, B., Sikora, M., & Kapusta-Duch, J. (2022). Preliminary Study on the Influence of the Polyphenols of Different Groups on the Digestibility of Wheat Starch, Measured by the Content of Resistant Starch. Applied Sciences, 12(21), 10859. https://doi.org/10.3390/app122110859