Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis
Abstract
:1. Introduction
2. Method
2.1. Embeddings and Bi-LSTM
2.2. Gcn and Aspect-Specific Masking
2.3. Part-of-Speech Gate
2.4. Attention-Based Prediction
2.5. Training
3. Experiments
3.1. Datasets and Experimental Settings
3.2. Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S.; AL-Smadi, M.; Al-Ayyoub, M.; Zhao, Y.; Qin, B.; Clercq, O.D.; et al. SemEval-2016 Task 5: Aspect Based Sentiment Analysis. In Proceedings of the 10th International Workshop on Semantic Evaluation, San Diego, CA, USA, 16–17 June 2016; pp. 19–30. [Google Scholar]
- D’Aniello, G.; Gaeta, M.; Rocca, I.L. KnowMIS-ABSA: An overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis. Artif. Intell. Rev. 2022, 55, 5543–5574. [Google Scholar] [CrossRef]
- Kiritchenko, S.; Zhu, X.; Cherry, C.; Mohammad, S. NRC-Canada-2014: Detecting Aspects and Sentiment in Customer Reviews. In Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Ireland, 23–24 August 2014; pp. 437–442. [Google Scholar]
- Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Mubarok, M.S.; Adiwijaya; Aldhi, M.D. Aspect-based sentiment analysis to review products using Naïve Bayes. AIP Conf. Proc. 2017, 1867, 020060. [Google Scholar]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Haykin, S.S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Medsker, L.; Jain, L.C. Recurrent Neural Networks: Design and Applications; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Luong, T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1412–1421. [Google Scholar]
- Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Sitaula, C.; Basnet, A.; Mainali, A.; Shahi, T.B. Deep Learning-Based Methods for Sentiment Analysis on Nepali COVID-19-Related Tweets. Comput. Intell. Neurosci. 2021, 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jeong, Y.S. Sentiment Classification Using Convolutional Neural Networks. Appl. Sci. 2019, 9, 2347. [Google Scholar] [CrossRef] [Green Version]
- Galassi, A.; Lippi, M.; Torroni, P. Attention in Natural Language Processing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4291–4308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, M.; Zhu, X.; Zhao, L. Attention-based LSTM for Aspect-level Sentiment Classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 606–615. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Fan, F.; Feng, Y.; Zhao, D. Multi-grained Attention Network for Aspect-Level Sentiment Classification. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 3433–3442. [Google Scholar]
- Xing, B.; Tsang, I.W. Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 6, 1092–1102. [Google Scholar] [CrossRef]
- Huang, L.; Sun, X.; Li, S.; Zhang, L.; Wang, H. Syntax-Aware Graph Attention Network for Aspect-Level Sentiment Classification. In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; pp. 799–810. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar]
- Rae, J.W.; Borgeaud, S.; Cai, T.; Millican, K.; Hoffmann, J.; Song, F.; Aslanides, J.; Henderson, S.; Ring, R.; Young, S.; et al. Scaling Language Models: Methods, Analysis & Insights from Training Gopher. arXiv 2021, arXiv:2112.11446. [Google Scholar]
- Zhang, C.; Li, Q.; Song, D. Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 3–7 November 2019; pp. 4568–4578. [Google Scholar]
- Xiao, L.; Hu, X.; Hu, Y.; Xue, Y.; Gu, D.; Chen, B.; Zhang, T. Targeted Sentiment Classification Based on Attentional Encoding and Graph Convolutional Networks. Appl. Sci. 2020, 10, 957. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Liu, P.; Zhang, Y. Exploiting Typed Syntactic Dependencies for Targeted Sentiment Classification Using Graph Attention Neural Network. arXiv 2020, arXiv:2002.09685. [Google Scholar]
- Liu, Q.; Ling, Z.H.; Jiang, H.; Hu, Y. Part-of-Speech Relevance Weights for Learning Word Embeddings. arXiv 2016, arXiv:1603.07695. [Google Scholar]
- Smith, A.; de Lhoneux, M.; Stymne, S.; Nivre, J. An Investigation of the Interactions Between Pre-Trained Word Embeddings, Character Models and POS Tags in Dependency Parsing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 2711–2720. [Google Scholar]
- Bird, S.; Loper, E. NLTK: The Natural Language Toolkit. In Proceedings of the ACL Interactive Poster and Demonstration Sessions, Barcelona, Spain, 21–26 July 2004; pp. 214–217. [Google Scholar]
- Honnibal, M.; Montani, I. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. To Appear 2017, 7, 411–420. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Li, X.; Bing, L.; Lam, W.; Shi, B. Transformation Networks for Target-Oriented Sentiment Classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 946–956. [Google Scholar]
- Tang, D.; Qin, B.; Liu, T. Aspect Level Sentiment Classification with Deep Memory Network. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 214–224. [Google Scholar]
- Chen, P.; Sun, Z.; Bing, L.; Yang, W. Recurrent Attention Network on Memory for Aspect Sentiment Analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 452–461. [Google Scholar]
- Ng, A.Y. Feature selection, L1 vs. L2 regularization, and rotational invariance. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004. [Google Scholar]
- Pontiki, M.; Galanis, D.; Pavlopoulos, J.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S. SemEval-2014 Task 4: Aspect Based Sentiment Analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Ireland, 23–24 August 2014; pp. 27–35. [Google Scholar]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Manandhar, S.; Androutsopoulos, I. SemEval-2015 Task 12: Aspect Based Sentiment Analysis. In Proceedings of the 9th International Workshop on Semantic Evaluation, Denver, CO, USA, 4–5 June 2015; pp. 486–495. [Google Scholar]
- Dong, L.; Wei, F.; Tan, C.; Tang, D.; Zhou, M.; Xu, K. Adaptive Recursive Neural Network for Target-dependent Twitter Sentiment Classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, ML, USA, 22–27 June, 2014; Volume 2, pp. 49–54. [Google Scholar]
- Hand, D.; Christen, P. A note on using the F-measure for evaluating record linkage algorithms. Stat. Comput. 2018, 28, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Gasper, K.; Spencer, L.A.; Hu, D. Does neutral affect exist? How challenging three beliefs about neutral affect can advance affective research. Front. Psychol. 2019, 10, 2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, D.; Qin, B.; Feng, X.; Liu, T. Effective LSTMs for Target-Dependent Sentiment Classification. In Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 11–16 December 2016; pp. 3298–3307. [Google Scholar]
- Huang, B.; Ou, Y.; Carley, K.M. Aspect Level Sentiment Classification with Attention-over-Attention Neural Networks. In Proceedings of the Social, Cultural, and Behavioral Modeling, Washington, DC, USA, 10–13 July 2018; pp. 197–206. [Google Scholar]
- Ma, D.; Li, S.; Zhang, X.; Wang, H. Interactive Attention Networks for Aspect-Level Sentiment Classification. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 4068–4074. [Google Scholar]
- Xiao, L.; Hu, X.; Chen, Y.; Xue, Y.; Chen, B.; Gu, D.; Tang, B. Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification. Multimed. Tools Appl. 2020, 81, 19051–19070. [Google Scholar] [CrossRef]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models are Unsupervised Multitask Learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
Dataset | Positive | Neutral | Negative |
---|---|---|---|
REST14 | 2164/728 | 637/196 | 807/196 |
REST15 | 1178/439 | 50/35 | 382/328 |
REST16 | 1620/597 | 88/38 | 709/190 |
LAPTOP | 994/341 | 464/169 | 870/128 |
1561/173 | 3127/346 | 1560/173 |
MODEL | REST14 | REST15 | REST16 | LAPTOP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc. | F1 | Acc. | F1 | Acc. | F1 | Acc. | F1 | Acc. | F1 | |
TD-LSTM [41] | 78.00 | 68.43 | 76.39 | 58.70 | 82.16 | 54.21 | 71.80 | 68.46 | 69.89 | 66.21 |
ATAE-LSTM [15] | 78.60 | 67.02 | 78.48 | 62.84 | 83.77 | 61.71 | 68.88 | 63.93 | 70.14 | 66.03 |
MemNet [33] | 79.61 | 69.64 | 77.31 | 58.28 | 85.44 | 65.99 | 70.64 | 65.17 | 71.48 | 69.90 |
AOA [42] | 79.97 | 70.42 | 78.17 | 57.02 | 87.50 | 66.21 | 72.62 | 67.52 | 72.30 | 70.20 |
IAN [43] | 79.26 | 70.09 | 78.54 | 52.65 | 84.74 | 55.21 | 72.05 | 67.38 | 72.50 | 70.81 |
TNet-LF [32] | 80.42 | 71.03 | 78.47 | 59.47 | 89.07 | 70.43 | 74.61 | 70.14 | 72.98 | 71.43 |
ASGCN [24] | 80.77 | 72.02 | 79.89 | 61.89 | 88.99 | 67.48 | 75.55 | 71.05 | 72.15 | 70.40 |
AEGCN [25] | 81.04 | 71.32 | 79.95 | 60.87 | 87.39 | 68.22 | 75.91 | 71.63 | 73.16 | 71.82 |
MGGCN [44] | 81.16 | 71.73 | 80.19 | 64.62 | 88.96 | 69.48 | 75.80 | 71.75 | 73.41 | 71.89 |
PGGCN | 83.84 | 76.80 | 82.47 | 66.64 | 90.42 | 74.49 | 77.74 | 74.56 | 74.57 | 72.01 |
MODEL | REST14 | REST15 | REST16 | LAPTOP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc. | F1 | Acc. | F1 | Acc. | F1 | Acc. | F1 | Acc. | F1 | |
w/o POS gate | 83.39 | 76.37 | 80.81 | 65.14 | 89.45 | 73.79 | 75.86 | 72.26 | 73.12 | 71.62 |
w/o position | 82.68 | 74.82 | 80.81 | 64.30 | 89.45 | 71.11 | 75.39 | 71.07 | 73.84 | 72.29 |
w/o mask | 79.29 | 69.85 | 78.04 | 63.52 | 87.50 | 64.99 | 72.41 | 67.88 | 72.40 | 71.13 |
w/o GCN | 81.25 | 72.47 | 81.00 | 63.34 | 87.82 | 69.67 | 74.61 | 70.69 | 72.40 | 71.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Kim, Y.; Jeong, Y.-S. Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis. Appl. Sci. 2022, 12, 10134. https://doi.org/10.3390/app121910134
Kim D, Kim Y, Jeong Y-S. Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis. Applied Sciences. 2022; 12(19):10134. https://doi.org/10.3390/app121910134
Chicago/Turabian StyleKim, Dahye, YoungJin Kim, and Young-Seob Jeong. 2022. "Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis" Applied Sciences 12, no. 19: 10134. https://doi.org/10.3390/app121910134
APA StyleKim, D., Kim, Y., & Jeong, Y.-S. (2022). Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis. Applied Sciences, 12(19), 10134. https://doi.org/10.3390/app121910134