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Abstract: We make daily comments on online platforms (e.g., social networks), and such natural
language texts often contain sentiment (e.g., positive and negative) for certain aspects (e.g., food
and service). If we can automatically extract the aspect-based sentiment from the texts, then it will
help many services or products to overcome their limitations of particular aspects. There have been
studies of aspect sentiment classification (ASC) that finds sentiment towards particular aspects. Recent
studies mostly adopt deep-learning models or graph neural networks as these techniques are capable
of capturing linguistic patterns that contributed to performance improvement in various natural
language processing tasks. In this paper, for the ASC task, we propose a new hybrid architecture of
graph convolutional network (GCN) and recurrent neural network. We design a gate mechanism
that jointly models word embeddings and syntactic representation of sentences. By experimental
results on five datasets, we show that the proposed model outperforms other recent models and also
verify that the gate mechanism contributes to the performance improvement. The overall F1 scores
that we achieved is 66.64∼76.80%.

Keywords: graph convolutional network; aspect-based sentiment analysis; POS gate; recurrent
neural; Word LSTM

1. Introduction

People often write comments on social network services (SNS) or websites of arbitrary
services (e.g., online shopping mall), and it is obvious that it will be significantly helpful
for service providers if it is possible to get the opinions or customer satisfaction level from
several customer comments. Such comments are mostly written in natural language texts,
and an example is shown in Figure 1; there are two aspects (e.g., food and service) with
different sentiment (e.g., positive and negative). There have been studies for analyzing
the natural language texts containing sentiment and aspects, and such a research field
is known as aspect-based sentiment analysis (ABSA). The ABSA contains few tasks [1]:
(1) entity-based aspect identification, (2) extraction of linguistic expressions that refer to
arbitrary aspects, and (3) aspect sentiment classification (ASC). We aim at the task of ASC
that extracts aspect-based sentiment from sentences. A sentence may contain multiple
aspects, each of which corresponds to different sentiment, and the aspect-based sentiment
(e.g., ‘service’: negative, and ‘food’: positive) will help to examine customer satisfaction;
for example, the restaurant owner will investigate what is wrong with the service in the
restaurant. Because previous studies might be interpreted in the wrong way if we use
different definitions of sentiment, we here follow the definition of Giuseppe D’Aniello
et al. [2]; sentiment is a durable emotional disposition that is developed by the user with
respect to an aspect.

For the task of ASC whose goal is to identify aspects and sentiment expressed towards
each aspect, there have been studies using machine learning models. Kiritchenko et al. [3]
used support vector machine (SVM) [4] and achieved 80% accuracy for a dataset of SemEval
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2014 Task 4 subtask 2 restaurant domain (REST14). Mubarok et al. [5] used naive Bayes
classifier with a feature selection algorithm, and they achieved a 78% of F1 score for the
REST14 dataset. Although these studies have shown successful performance, they are
limited because they require significant effort in feature engineering.

Deep learning (DL) models are favorable as they find arbitrary features automatically
from data [6]. There are a few well-known types of DL models: multi-layered perceptron
(MLP) [7], recurrent neural networks (RNN) [8], convolutional neural networks (CNN) [9],
and attention mechanism [10]. These different DL models have their own merits, as dis-
cussed in [11]; for example, some studies employed CNN to tackle the task of sentiment
classification as the CNN is known to be efficient and effective in analyzing local pat-
terns [12,13]. In particular, attention-based RNN architecture was often adopted in many
studies of the ASC task as the attention-based architecture has shown its effectiveness in
analyzing sequential patterns beneath the word sequences of natural language texts [10,14].
Wang et al. [15] proposed an attention-based RNN model using long short-term memory
(LSTM) [16], and achieved 78% accuracy for REST14. Fan et al. [17] proposed bi-directional
LSTM (Bi-LSTM) with a fine-grained attention mechanism, that captures the word-level
interaction between aspect and context. They achieved 81% accuracy for REST14.

Figure 1. Example of aspect-based sentiment analysis.

Recently, a graph neural network is widely used to incorporate graph-like patterns
such as dependency between words for the ASC task. Xing and Tsang [18] proposed a
hybrid architecture of LSTM and a graph neural network, and adopted other resources
(e.g., DBpedia and Wikipedia) to train their model. They achieved 87% accuracy for
REST14. Huang et al. [19] utilized pre-trained Bidirectional Encoder Representations from
Transformers (BERT) [20] and graph attention network (GAT) on the dependency tree, and
achieved 85% accuracy for REST14. Using context-aware pre-trained language models
(e.g., BERT) has drawn much attention as it allows us to achieve better accuracy; however,
it requires relatively large computational cost compared to context-free language models
(e.g., Word2Vec [21] and Glove [22]), as reported in [23]. There are studies that adopt
neither context-aware pre-trained models nor other resources. Zhang et al. [24] proposed
building a graph convolutional network (GCN) over the dependency tree of a sentence
to exploit syntactical information and word dependencies, and achieved 80% accuracy
for the REST14 dataset. Xiao et al. [25] proposed a model of multi-head attention and an
attentional-encoding-based GCN of a dependency tree, and achieved 81% accuracy for
REST14. Bai et al. [26] proposed a relational graph attention network (RGAT) to incorporate
typed syntactic dependencies. They also utilized part-of-speech (POS) tags that are known
to convey rich syntactic patterns, and achieved 83% accuracy for REST14. However, they
just used embeddings of POS tags, and did not jointly model the POS embeddings and
word embeddings.

Word embeddings have often been jointly modeled with syntactic representation (e.g.,
POS tags) [27,28] because it allows us to capture more sophisticated patterns between
semantic and syntactic representation. For example, the word ‘good’ has a different
meaning for different POS tags (e.g., adverb or noun), and it has multiple meaning even
for the same POS tag. In this paper, we assume that modeling semantic and syntactic
representations jointly will contribute to performance improvement for the ASC task.

We propose a multi-layered GCN-BiLSTM architecture with a gate mechanism that
jointly incorporates POS representations and word representations, and proves the effec-
tiveness of the model by experimental results. The proposed architecture consists of GCN
and BiLSTM, where the BiLSTM extracts sequential patterns in the given texts and the GCN
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analyzes syntactic information. The gate mechanism incorporates the syntactic information
and POS tags together, which makes the entire model work more accurately.

2. Method

Figure 2 depicts the framework of our proposed model, namely POS-gated graph
convolutional networks (PGGCN), that is composed of two embedding layers (e.g., word
embedding and POS embedding) and a hybrid of GCN-BiLSTM layers with the attention
mechanism. The word embedding layer and the POS embedding layer convert the given
input sequence of words (or POS tags) into real-valued vectors in a different space; thus,
we will get two embedding vectors from the embedding layers. Each of the two embedding
vectors is delivered to BiLSTM that captures sequential patterns in the embedding vector.
The multi-layered GCN and POS-gated attention mechanism exploit the sequential patterns
extracted from the BiLSTM models, and generates final representation. Details of each part
of the proposed model are provided in the following subsections.

Figure 2. The framework of the proposed model. Word and POS sequences are firstly embedded
by embedding layers, and the embedding vectors are processed by two BiLSTM models. Multi-
layered GCN and attention mechanism incorporate syntactic patterns and POS tags to generate final
representation.

2.1. Embeddings and Bi-LSTM

Given a sentence {w1, w2, ..., wn} where wi indicates i-th word, we get a sequence of
POS tags {p1, p2, ..., pn} using NLTK [29] POS tagger. Aspect is a sub-sequence of the word
sequence, and there may exist one or more aspects in a sentence. The words and POS
tags are passed to the word embedding layer and POS embedding layer. The embedding
layers embed the words and POS tags in vector spaces with word embedding matrix
and POS embedding matrix Ew ∈ Rde×|V|, Ep ∈ Rde×|P|, where de is the dimension of
embedding, |V| denotes the vocabulary size, and |P| indicates the number of unique POS
tags. Pre-trained GloVe [22] is used for the word embedding, and the POS embedding is
generated using training data with POS tags. The word embeddings and POS embeddings
are passed to two different bi-directional LSTM layers (i.e., Word LSTM and POS LSTM),
and they yield a sequence of word hidden state vectors {hw

1 , hw
2 , ..., hw

n } and a sequence of
POS hidden state vectors {hp

1 , hp
2 , ..., hp

n}, where h·t ∈ Rk is a concatenation of hidden states
of forward and backward LSTM at t-th word.
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2.2. Gcn and Aspect-Specific Masking

We created an adjacency matrix A between words based on a dependency tree obtained
by SpaCy toolkit [30]. The matrix A and word hidden states are fed into the L-layered
GCN as shown in the left side of Figure 2. For every l-th layer, i-th word representation
hl

i is updated by incorporating representations of its adjacent words with normalization
factor [31] as follows:

h̃l
i =

n

∑
j=1

AijW l gl−1
j (1)

hl
i = Relu(h̃l

i/(di + 1) + bl) (2)

where gl−1
j is j-th word representation of previous layer, di = ∑n

j=1 Aij is a degree of the i-th

word in the dependency tree. Note that hl
i is computed using gl−1

j that is a position-aware
word representation [32–34] as follows.

gl−1
i = pihl−1

i (3)

pi =


1− r+1−i

n 1 ≤ i < r + 1
0 r + 1 ≤ i ≤ r + m

1− i−r−m
n r + m < i ≤ n

(4)

where r + 1 is the starting position of an aspect, m is a length of the aspect, and pi ∈ R is
the position-aware weight of the i-th word.

At the last GCN layer, we get the final hidden state vectors HL = {hL
i } where

1 ≤ i ≤ n. As shown in the top-left corner in Figure 2, we perform aspect-specific
masking that removes non-aspect hidden state vectors; the outputs will be Hmask =
{0, ..., hL

r+1, ..., hL
r+m, ..., 0}.

2.3. Part-of-Speech Gate

POS gate is designed to regularize the POS hidden states based on word hidden states.
For the i-th word, it takes hw

i and hp
i as input, and generates hpos

i ∈ Rm as follows.

hg
i = Wg · tanh(hw

i + hp
i ) (5)

where Wg is a trainable matrix of Rm×k. The gate output is used together with GCN output
to generate attention scores as shown in top-right corner of Figure 2.

2.4. Attention-Based Prediction

We compute attention scores for t-th position by incorporating Hmask and Hgate = {hg
i }

through a retrieval-based attention mechanism [24].

βt =
n

∑
i=1

hg>
t hL

i =
r+m

∑
i=r+1

hg>
t hL

i (6)

αt =
exp(βt)

∑n
i=1 exp(βi)

(7)

Finally, sentiment ŷ is predicted based on hatt as formulated below.

hatt =
n

∑
i=1

αih
g
i (8)

ŷ = so f tmax(Whatt + b) (9)
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2.5. Training

We train the model using the cost function C with L2-regularization [35] and cross-
entropy:

C = −
N

∑
i=1

S

∑
j=1

yj
i · log(ŷj

i) + γ‖Θ‖2 (10)

where N is the number of instances, S is the number of classes, ŷj
i means the output of the

model, yj
i is the ground truth, and γ denotes the L2-regularization coefficient.

3. Experiments
3.1. Datasets and Experimental Settings

We conduct experiments on five datasets: restaurant reviews of SemEval 2014, 2015,
and 2016 (i.e., REST14, REST15, and REST16) [1,36,37], laptap review of SemEval 2014
(LAPTOP), and Twitter review data (TWITTER) [38]. The Statistics are summarized in
Table 1.

The embedding dimension is set to 300, and we borrowed pre-trained GloVe vec-
tors [22] to initialize the word embeddings. The number of GCN layers L = 2. We utilized
Adam optimizer with the initial learning rate of 10−3. The L2 regularization coefficient γ is
10−5, and mini-batch size is 32. We use accuracy and macro-averaged F1 score as evaluation
metrics, and all results are obtained by averaging 20 independent runs; the F1 score and
accuracy are, of course, not the perfect measure, and alternative ways of F-measure [39]
may be considered when they are more studied in the future. Our model is compared with
others [18,19] that do not employ pre-trained context-aware language models (e.g., BERT)
or any other resources (e.g., dataset or knowledge-base).

Table 1. Statistics of the datasets, where m/n indicates the number of training instances m and the
number of test instances n.

Dataset Positive Neutral Negative

REST14 2164/728 637/196 807/196
REST15 1178/439 50/35 382/328
REST16 1620/597 88/38 709/190

LAPTOP 994/341 464/169 870/128
TWITTER 1561/173 3127/346 1560/173

3.2. Results

Table 2 shows the overall performance of our model PGGCN and other various
models. The PGGCN outperformed other models with all datasets. There are a few
interesting points. First, all GCN-based models (e.g., ASGCN, AEGCN, and MGGCN)
showed better performance than others; this might imply that the GCN has better ability
to grasp underlying syntactic patterns, so it contributes to performance improvement.
Second, with the TWITTER dataset, the performance gap between PGGCN and others is
smaller compared to other datasets of SemEval. The TWITTER dataset has quite different
nature from others; it is collected from social network platform and has much more ‘neutral’
instances, as shown in Table 1. Such many ‘neutral’ instances confuse the models, and may
drive the performance gap to be smaller. This is reasonable as ‘neutral’ might not even exist
as we are always feeling something [40]. We also observed that all models generally gave
better results with greater datasets, except for the TWITTER dataset; this might be related
to the many ‘neutral’ instances of the TWITTER dataset.

We performed experiments for the PGGCN without position weight, aspect-specific
masking, GCN layers, and POS gate, to check its impact on the performance. The result is
summarized in Table 3; it shows that they contributed to performance improvement. In
particular, it proves the usefulness of the POS gate, which is the contribution of this paper;
modeling word and POS representations jointly helps to get better results on the ASC task.
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We also conducted experiments with a varied number of GCN layers, and its accuracies
and F1 scores are shown in Figures 3 and 4, respectively. We found that five or more GCN
layers did not give any performance gain, and the best number of layers was 2.

Table 2. Averaged accuracies and F1 scores with five datasets (e.g., REST14, REST15, REST16,
LAPTOP, and TWITTER), where results with \ are borrowed from [24]. The best results for each
dataset are in bold. The GCN-based models generally gave better performance than the others, and
our proposed PGGCN achieved the best performance.

MODEL
REST14 REST15 REST16 LAPTOP TWITTER

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

TD-LSTM [41] 78.00 68.43 76.39 58.70 82.16 54.21 71.80 68.46 69.89 66.21
ATAE-LSTM [15] 78.60 67.02 78.48 62.84 83.77 61.71 68.88 63.93 70.14 66.03
MemNet \ [33] 79.61 69.64 77.31 58.28 85.44 65.99 70.64 65.17 71.48 69.90
AOA \ [42] 79.97 70.42 78.17 57.02 87.50 66.21 72.62 67.52 72.30 70.20
IAN \ [43] 79.26 70.09 78.54 52.65 84.74 55.21 72.05 67.38 72.50 70.81
TNet-LF \ [32] 80.42 71.03 78.47 59.47 89.07 70.43 74.61 70.14 72.98 71.43
ASGCN \ [24] 80.77 72.02 79.89 61.89 88.99 67.48 75.55 71.05 72.15 70.40
AEGCN [25] 81.04 71.32 79.95 60.87 87.39 68.22 75.91 71.63 73.16 71.82
MGGCN [44] 81.16 71.73 80.19 64.62 88.96 69.48 75.80 71.75 73.41 71.89

PGGCN 83.84 76.80 82.47 66.64 90.42 74.49 77.74 74.56 74.57 72.01

Figure 3. Accuracies with varied number of GCN layers and different datasets, where horizontal axis
indicates the number of GCN layers, and the vertical axis represents accuracy.

Figure 4. F1 scores with varied number of GCN layers and different datasets, where horizontal axis
indicates the number of GCN layers and the vertical axis represents F1 score.
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Table 3. Averaged accuracies and F1 scores of PGGCN without some components, where ‘w/o POS
gate’, ‘w/o position’, ‘w/o mask’, and ‘w/o GCN’ indicate PGGCN without POS gate, without
position weights, without aspect-specific masking, and without GCN layers, respectively. The
PGGCN without any component gave the worst results, which implies that all components including
the POS gate are important.

MODEL
REST14 REST15 REST16 LAPTOP TWITTER

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

w/o POS gate 83.39 76.37 80.81 65.14 89.45 73.79 75.86 72.26 73.12 71.62
w/o position 82.68 74.82 80.81 64.30 89.45 71.11 75.39 71.07 73.84 72.29
w/o mask 79.29 69.85 78.04 63.52 87.50 64.99 72.41 67.88 72.40 71.13
w/o GCN 81.25 72.47 81.00 63.34 87.82 69.67 74.61 70.69 72.40 71.30

4. Conclusions

As a solution for the ASC task, we propose a hybrid architecture of GCN-BiLSTM,
namely PGGCN, with a gate mechanism that jointly exploits word representations and POS
representations. We compared PGGCN with other recent models by experiments with five
datasets, and showed that PGGCN outperformed the others. Amongst the many models,
we found that GCN-based models outperformed others, which indicates that syntactic
patterns discovered by GCN has an impact on the performance. We also observed that
the models generally gave better results with greater datasets, but the models gave poor
results when the dataset has many ‘neutral’ instances. The experimental results of PGGCN
without the POS gate showed the effectiveness of the POS gate. We did not utilize any
pre-trained language models [20,45] that have shown promising results recently, so we
will investigate a way of combining our model with pre-trained context-aware language
models as future work.
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