UV3D: Underwater Video Stream 3D Reconstruction Based on Efficient Global SFM
Abstract
:1. Introduction
2. System Design and Process Introduction
3. SFM Preliminaries
3.1. Filter Out Blurred Frames
3.2. Extract Key Frames
Algorithm 1 Key Frame Extraction |
Input: Initial frames Output: Key frames procedure1: Dendrogram Construction 1: features of initial frames: ; 2: Distances pdist (features); 3: while (num of clusters > 1): merge the clusters with smallest distance; calculate distances between new cluster and old clusters; end procedure1 procedure2: Key frame extraction 4: t OTSU () 5: num of clusters k fcluster (dendrogram, t) 6: extract clustering centers end procedure2 |
- procedure1:
- Dendrogram Construction
- procedure2:
- Key frame extraction
3.3. UW Image Enhancement
4. LTS-L1RA
4.1. Existing Methods for Rotation Averaging
4.2. LTS-L1RA Algorithm
Algorithm 2 Rotation Averaging |
Input: Relative Rotations Output: Global Rotations Initialization: Initial guess Function name and argument: A compute sparse matric from relative rotations while do: 1: 2: 3: solve (minimize ) 4: end while |
Algorithm 3 Pseudocode of C-step |
1: estimate the regression coefficient based on the complete sample set 2: compute the residuals based on and sort according to ascending order: 3: put as h samples with the smallest error 4: estimate the regression coefficient based on |
Algorithm 4 Least trimmed squares (LTS)-L1RA |
Input: Relative Rotations Output: Global Rotations Initialization: Initial guess, h = 0.75k procedure1: c-steps = Initial guess for I in range (3): 1: 2: compute errors of in degrees: for all , do: end for 3: sort (errors of in degrees) [:h] 4: compute based on : 5: L1 (,) end for end procedure1 procedure2: L1RA on subsets of k cases 6: compute L1RA based on until convergence end procedure2 |
5. Global SFM-PMVS Pipeline
6. Experiments
6.1. LTS-L1RA Confirmation Experiment
6.2. Pool Experiment
7. Result
8. Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakatani, T.; Ura, T.; Ito, Y. AUV “TUNA-SAND” and its Exploration of hydrothermal vents at Kagoshima Bay. In Proceedings of the OCEANS 2008—MTS/IEEE, Kobe Techno-Ocean, Kobe, Japan, 8–11 April 2008. [Google Scholar]
- Kalacska, M.; Lucanus, O.; Sousa, L.; Vieira, T.; Arroyo-Mora, J. Freshwater fish habitat complexity mapping using above and underwater structure-from-motion photogrammetry. Remote Sens. 2019, 10, 1912. [Google Scholar] [CrossRef] [Green Version]
- Nocerino, E.; Menna, F.; Remondino, F. Accuracy of typical photogrammetric networks in cultural heritage 3D modeling projects. Int. Arch. Photogramm. Remote Sens. 2014, XL-5, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Li, Y.; Li, Z.; Hu, Z.; Li, J.H. Seabed terrain 3D reconstruction using 2D forward-looking sonar: A sea-trial report from the pipeline burying project. IFAC-Pap. Line 2019, 52, 175–180. [Google Scholar] [CrossRef]
- Brandou, V.; Allais, A.G.; Perrier, M. 3D Reconstruction of Natural Underwater Scenes Using the Stereovision System IRIS. In Proceedings of the OCEANS 2007—Europe, Aberdeen, UK, 18–21 June 2007; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
- Moulon, P.; Monasse, P.; Marlet, R. Global Fusion of Relative Motions for Robust, Accurate and Scalable Structure from Motion. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Snavely, N.; Seitz, S.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. ACM Trans. Graph. 2006, 25, 835–846. [Google Scholar] [CrossRef]
- Gao, X.; Hu, L.; Cui, H.; Shen, S.; Hu, Z. Accurate and efficient ground-to-aerial model alignment. Pattern Recognit. 2018, 76, 288–302. [Google Scholar] [CrossRef]
- Triggs, B.; Zisserman, A.; Szeliski, R. Vision Algorithms: Theory and Practice; Springer: Berlin, Germany, 2000. [Google Scholar]
- Wu, C. Towards Linear-Time Incremental Structure from Motion. In Proceedings of the 2013 International Conference on 3D Vision—3DV 2013, Seattle, WA, USA, 29 June–1 July 2013; IEEE Computer Society: Washington, DC, USA, 2013. [Google Scholar]
- Moulon, P.; Monasse, P.; Perrot, R. OpenMVG: Open Multiple View Geometry. In Proceedings of the International Workshop on Reproducible Research in Pattern Recognition, Cancún, Mexico, 4 December 2016. [Google Scholar]
- Hartley, R.; Trumpf, J.; Dai, Y.; Li, H. Rotation averaging. Int. J. Comput. Vis. 2013, 103, 267–305. [Google Scholar] [CrossRef]
- Wilson, K.; Snavely, N. Robust Global Translations with 1DSfM. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Su, Z.; Pan, J.; Lu, L.; Dai, M.; He, X.; Zhang, D. Refractive three-dimensional reconstruction for underwater stereo digital image correlation. Opt. Express 2021, 29, 12131. [Google Scholar] [CrossRef]
- Su, Z.; Pan, J.; Zhang, S.; Wu, S.; Yu, Q.; Zhang, D. Characterizing dynamic deformation of marine propeller blades with stroboscopic stereo digital image correlation. Mech. Syst. Signal Process. 2022, 162, 108072. [Google Scholar] [CrossRef]
- Ba Nerjee, J.; Ray, R.; Vadali, S.; Shome, S.N.; Nandy, S. Real-time underwater image enhancement: An improved approach for imaging with auv-150. Sadhana 2016, 41, 225–238. [Google Scholar] [CrossRef]
- Soni, O.K.; Kumare, J.S. A Survey on Underwater Images Enhancement Techniques. In Proceedings of the 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT), Gwalior, India, 10–12 April 2020. [Google Scholar]
- Galdran, A.; Pardo, D.; Picó, A.; Alvarez-Gila, A. Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef] [Green Version]
- He, K.M.; Sun, J.; Tang, X.O. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar] [PubMed]
- Li, C.; Guo, J.; Guo, C. Emerging from water: Underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 2018, 25, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Skinner, K.A.; Eustice, R.M.; Johnson-Roberson, M. Watergan: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 2017, 3, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhou, S.; Cui, J.H. Prospects and problems of wireless communication for underwater sensor networks. Wirel. Commun. Mob. Comput. 2010, 8, 977–994. [Google Scholar]
- Liu, J.; Guan, W.; Wang, X.; Liu, J. Optical imaging study of underwater acousto-optical fusion imaging systems. In Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems, Shenzhen, China, 3–5 December 2018. [Google Scholar]
- Cui, J.H.; Kong, J.; Gerla, M.; Zhou, S. The challenges of building scalable mobile underwater wireless sensor networks for aquatic applications. IEEE Netw. 2006, 20, 12–18. [Google Scholar]
- Chatterjee, A.; Govindu, V.M. Efficient and Robust Large-Scale Rotation Averaging. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; IEEE Computer Society: Washington, DC, USA, 2013. [Google Scholar]
- Pech-Pacheco, J.L.; Cristobal, G.; Chamorro-Martinez, J.; Fernandez-Valdivia, J. Diatom autofocusing in brightfield microscopy: A comparative study. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, 3–7 September 2000; IEEE Computer Society: Washington, DC, USA, 2000. [Google Scholar]
- Nasreen, A.; Roy, K.; Roy, K.; Shobha, G. Key Frame Extraction and Foreground Modelling Using K-Means Clustering. In Proceedings of the 2015 7th International Conference on Computational Intelligence, Communication Systems and Networks, Riga, Latvia, 3–5 June 2015; IEEE Computer Society: Washington, DC, USA, 2015. [Google Scholar]
- Gharbi, H.; Bahroun, S.; Massaoudi, M.; Zagrouba, E. Key frames extraction using graph modularity clustering for efficient video summarization. In Proceedings of the ICASSP 2017—2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Smith, A.R. Color gamuts transform pairs. In ACM-SIGGRAPH 78 Conference Proceedings; Association for Computing Machinery: New York, NY, USA, 1978. [Google Scholar]
- Otsu, N. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Panetta, K.; Gao, C.; Agaian, S. Human-Visual-System-Inspired Underwater Image Quality Measures. IEEE J. Ocean. Eng. 2016, 41, 541–551. [Google Scholar] [CrossRef]
- Liu, J.; Gong, S.; Guan, W.; Li, B.; Liu, J. Tracking and localization based on multi-angle vision for underwater target. Electronics 2020, 9, 1871. [Google Scholar] [CrossRef]
- Moisan, L.; Moulon, P.; Monasse, P. Automatic homographic registration of a pair of images, with a contrario elimination of outliers. Image Process. Line 2012, 2, 329–352. [Google Scholar] [CrossRef] [Green Version]
- Govindu, V.M. Lie-algebraic averaging for globally consistent motion estimation. In Proceedings of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004. [Google Scholar]
- Martinec, D.; Pajdla, T. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Minneapolis, MN, USA, 18–23 June 2007; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
- Hartley, R.; Aftab, K.; Trumpf, J. L1 rotation averaging using the Weiszfeld algorithm. In Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar]
- Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least-squares. Commun. Stat. 1977, 6, 813–827. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Driessen, K.V. Computing lts regression for large data sets. Data Min. Knowl. Discov. 2006, 12, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D. Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Cover, T.M.; Hart, P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1953, 13, 21–27. [Google Scholar] [CrossRef]
- Furukawa, Y.; Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1362–1376. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Y.; Gao, S.; Wang, X.; Yue, H. An RNN-based delay-guaranteed monitoring framework in underwater wireless sensor networks. IEEE Access 2019, 7, 25959–25971. [Google Scholar] [CrossRef]
- Liu, J.; Wei, X.; Bai, S. Autonomous underwater vehicles localisation in mobile underwater networks. Int. J. Sens. Netw. 2017, 23, 61. [Google Scholar] [CrossRef]
Parameter | Method | ||
---|---|---|---|
L1RA-IRLS | LTS-L1RA | Comparison | |
Running time (s) | 106.712 | 85.400 | −19.97% |
Mean error(degree) | 3.394 | 3.432 | +1.12% |
RMS error (degree) | 7.274 | 7.161 | −1.55% |
Processing rate (Amount of data/s) | 606.099 | 757.354 | +24.96% |
Mean error/processing rate | −19.11% |
Name | Configuration |
---|---|
Pool | 3 m × 4 m × 1 m |
Medium | Water with suspended matter |
Calibration board | GP100 |
Camera | With waterproof case and lighting device |
Frame Width | 1920 pixels |
Frame Height | 1080 pixels |
Frame Rate | 60 FPS (frames per second) |
Environment | Python 3.5, Ubuntu 16.04 |
Visualization tool | MeshLab |
Environment | Video | Point Cloud | Comparison |
---|---|---|---|
Enough light | 140 MB | 36.1 MB | −74.21% |
Insufficient light | 72.1 MB | 25.8 MB | −64.22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Li, Q.; Gong, S.; Liu, J.; Guan, W. UV3D: Underwater Video Stream 3D Reconstruction Based on Efficient Global SFM. Appl. Sci. 2022, 12, 5918. https://doi.org/10.3390/app12125918
Chen Y, Li Q, Gong S, Liu J, Guan W. UV3D: Underwater Video Stream 3D Reconstruction Based on Efficient Global SFM. Applied Sciences. 2022; 12(12):5918. https://doi.org/10.3390/app12125918
Chicago/Turabian StyleChen, Yanli, Qiushi Li, Shenghua Gong, Jun Liu, and Wenxue Guan. 2022. "UV3D: Underwater Video Stream 3D Reconstruction Based on Efficient Global SFM" Applied Sciences 12, no. 12: 5918. https://doi.org/10.3390/app12125918
APA StyleChen, Y., Li, Q., Gong, S., Liu, J., & Guan, W. (2022). UV3D: Underwater Video Stream 3D Reconstruction Based on Efficient Global SFM. Applied Sciences, 12(12), 5918. https://doi.org/10.3390/app12125918