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Abstract: With the increasing demand for underwater resource exploration, three-dimensional (3D)
reconstruction technology is important for searching for lost underwater civilizations, underwater
shipwrecks, or seabed structures. However, faced with the limitations of underwater unmanned
systems in terms of energy, bandwidth, and transmission delay, 3D reconstruction technology based
on video streams as direct data will not work well. We propose a terminal image processing strategy
to save data transmission time and cost and to obtain 3D scene information as soon as possible. Firstly,
we propose an adaptive threshold key frame extraction algorithm based on clustering, which extracts
key frames from the video stream as structure from motion (SFM) image sequences. On this basis, we
enhance the underwater images with sufficient and insufficient illumination to improve the image
quality and obtain a better visual effect in the 3D reconstruction step. Additionally, we choose global
SFM to construct the scene and propose a faster rotation averaging method, the least trimmed square
rotation averaging (LTS-RA) method, based on the least trimmed squares (LTS) and L1RA methods.
It is proven to reduce 19.97% of the time through experiments. Finally, our experiments demonstrate
that the dense point cloud saves about 70% of the transmission cost compared to video streaming.

Keywords: key frame extraction; clustering; image enhancement; LTS rotation averaging; global
SFM-PMVS

1. Introduction

As is known to us, the ocean contains 80 percent of all living resources on earth. Along
with this comes a strong demand for marine resource exploration. The 3D reconstruction is
a crucial step in some underwater tasks, such as exploration, archaeology, and freshwater
ecological environment investigations. Scientists have completed some underwater mis-
sions, such as quantifying the habitat complexity of freshwater ecosystems and exploring
and modeling underwater historical sites based on 3D reconstruction technology [1–3]. In
the area of underwater detection, autonomous underwater vehicles (AUVS) with detection
devices are widely used as underwater mobile detection equipment. AUV can operate for
longer periods and over larger areas to complete those tasks beyond human capabilities.
The detection devices carried on the AUVs can be divided into two types: acoustics (e.g.,
side scan sonar) and optics (e.g., monocular camera). However, due to their different imag-
ing principles, there are strong and weak points to both of them. Regarding sonar imaging
systems, they can propagate over long distances, even in turbid water. For example, Song
et al. made a seabed terrain 3D reconstruction using two-dimensional (2D) forward-looking
sonar in 2019 [4]. However, sonar images lack color information and are black and white
binary images; additionally, the side scan sonar images are very narrow and contain too
little information. Optical cameras are also widely used as external sensors underwater;
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optical images are colorful and full of detailed information compared to acoustic sensors.
They are used on land more commonly, such as with drone navigation or self-driving
technology. The limitation of optical camera applications underwater mainly comes from
the poor visibility underwater due to the much stronger attenuation and scattering of
light in water than that in the atmosphere, meaning optical sensors are more suitable for
exploring close-range targets [5].

In general, research on underwater 3D reconstruction is mainly based on the SFM
(structure from motion) system—a method used for calculating both camera poses and
structures from a set of images [6], which can be divided into two categories, incremental
SFM and global SFM. Incremental SFM [7,8] starts from a two-view 3D reconstruction as
the initial structure and add views one-by-one with bundle adjustment [9] every time. Re-
constructing the model of the scene sequentially can be robust and accurate; however, with
the repeated registration and triangulation process, the cumulative error becomes larger
and larger, which may result in scene drift [10]. Additionally, repetitively solving nonlinear
bundle adjustments results in poor run-time efficiency. Regarding global SFM [11], the
pipeline usually solves the problem in 3 steps. The first step solves all pairwise relative
rotations through the epipolar geometry, and constructs a view graph whose vertexes
represent cameras and whose edges represent epipolar geometry constraints. The second
step involves rotation averaging [12] and translation averaging [13], which separately solve
camera orientation and motion issues. The last step is the bundle adjustment, which aims
to minimize the reprojection error and refine both the scene structure and camera poses.
Compared to incremental SFM, the global method avoids cumulative error and is more
efficient. Regarding the disadvantages of global SFM, it is not robust enough to outliers.

According to a large number of studies, most underwater stereo vision systems
are based on incremental SFM [14,15]. However, the incremental approach is strongly
dependent on the choice of the initial image pair and the selection of the next frame.
Due to the complexity of the underwater environment coupled with the surge in water,
the instability of the device will increase and the image may be intermittent, meaning
that the selection of the next frame will be more difficult. Although the incremental
approach is more robust, the efficiency and accuracy are not as good as the global approach,
and the cumulative error also easily causes scene drift. If the robustness of global SFM
can be improved, we could obtain a better reconstruction effect at a faster speed. The
application of global SFM in underwater 3D reconstruction currently is still very limited, so
in this paper we will use the more rapid and robust global SFM for the 3D reconstruction
of underwater targets, and we will also propose a complete reconstruction process for
underwater environments.

For underwater 3D reconstruction tasks, sonar images lack color information, meaning
optical images are more conducive to obtaining the complete picture of the target. There
are many challenges for underwater 3D reconstruction. On the one hand, the quality of
the image significantly influences the reconstruction results; however, the underwater
images may have problems such as noise, blur, and color degradation [16,17], meaning
image enhancement and color correction are necessary prior to reconstruction [18]. To
restore images degraded by the underwater environment, many scientists have proposed
many solutions. For instance, an unsupervised method was raised by Galdran et al. [19]
in 2015, which is robust and simple at the same time. Additionally, some supervised
methods [20,21] based on training data have been presented in recent years. On the
other hand, the propagation speed of an acoustic wave is five times slower than that on
land; along with the large amount of noise and narrow bandwidth [22], the efficiency of
underwater data transmission is extremely low.

To address the problems described above, and because of the rich detailed information
available from optical imaging and superior transmission efficiency of acoustic systems,
we present a terminal image processing strategy based on an underwater acousto-optical
fusion imaging system [23]. After the sonar on the leader ship detects the target, the AUV
carrying the optical camera will approach the target and obtain the three-dimensional
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structure of the target from the video stream, which is completed on the terminal AUV
to implement the smart ocean concept [24]. After this, the processed data are sent to the
leader ship through the acoustic wave. In general, the core of this article is focused on
how to reconstruct the three-dimensional structure of the target object and compress the
data from the continuous optical images collected by the optical camera mounted on the
AUV. The process is as follows. Firstly, to obtain the image sequence for SFM, the key
frame extraction method is used to obtain key frames from the video stream. The following
step is to improve the quality of the images, which is essential for the feature detection of
underwater images. In this paper, we use different methods to enhance the images with
various disadvantages. In addition, we propose a robust method for rotation averaging
during the global SFM process, which improves the efficiency of the 3D point estimation.
Finally, we summarize an SFM-PMVS pipeline, and every detail is enumerated. Under
this strategy, we improve the data transmission efficiency and make it easier to obtain an
overview of the underwater scene.

2. System Design and Process Introduction

The core aim of this study is to design an underwater AUV terminal processing
strategy based on an optical vision system that can improve the transmission efficiency by
transmitting point clouds instead of transmitting image data, so as to achieve the purpose
of compressing the image data. The system performs calculations from the video stream to
the 3D point cloud at the terminal AUV, and the main flow chart of the system is shown in
Figure 1.
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Figure 1. Underwater AUV terminal processing strategy based on optical vision system.

First of all, the leader ship with the sonar positioning and navigation system achieves
the detection and location of the target, then the AUV’s route is planned and driven from
the main ship to collect the video stream of the target.

Next, the video stream is preprocessed to obtain the image sequence through ‘key
frame extraction’ and ‘image enhancement’ processes. We firstly filter the blurred frames
with the Laplace variance algorithm and extract key frames using the clustering algorithm.
The key frame extraction step allows more efficient 3D reconstruction based on images.
A detailed description of this stage can be seen in Sections 3.1 and 3.2. Next is the image
enhancement module. In this step, different enhancement methods are used for images with
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various problems, including color degradation and too much noise. This step reduces the
number of incorrect feature matches and allows for more robust global rotation estimations.
We give a detailed description of this stage in Section 3.3.

The last step is the 3D reconstruction, whereby the point clouds can be generated
from the image sequence through the ‘SFM and PMVS’ process. We present a more
efficient rotation-averaging method based on L1RA [25] raised in 2013 by Chatterjee in our
algorithm, namely LTS (least trimmed squares), which is a robust regression method that is
integrated into the rotation averaging. Our experiment show its efficiency, while a detailed
description is shown in Section 6.1. Then, we introduce a clear global SFM-PMVS pipeline
in Section 5.

3. SFM Preliminaries

We obtain a video stream from the AUV’s camera, although we need to extract key
frames from the video stream as the image sequence for the 3D reconstruction. However,
building the structure from all of the frames is not realistic; therefore, we develop the
process shown in Figure 2 to convert the video stream to an image sequence that describes
the preliminaries for the SFM system. Firstly, we filter out the blurred frames from the
video stream and obtain the initial frames. Next, a key frame extraction method based on
clustering is used to extract key frames from initial frames. At last, we perform the image
enhancement step on the key frames to obtain the final image sequence.
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3.1. Filter Out Blurred Frames

Firstly, we take the underwater environment into consideration. Due to the instability
of underwater equipment caused by water flow, a few frames in the video may be blurred,
so we hope to obtain clearer image frames as much as possible for subsequent 3D recon-
struction efforts. The first step is to filter out the blurred frames. In this paper, we measure
the degree of ambiguity with the Laplace variance algorithm.

The Laplacian operator is the second-order derivative of the image, which can de-
tect rapid changes in the gray value of the image. It highlights the region in the image
that contains fast gradient changes. Referring to Equation (1), I(x, y) is the grayscale
image, L(x, y) is the Laplacian-based image, and Equation (2) is the discrete form of the
Laplacian operator:

L(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 (1)

L(x, y) = I(x + 1, y) + I(x− 1, y) + I(x, y + 1) + I(x, y− 1)− 4I(x, y) (2)

This process can be calculated using a convolution kernel and can generate an image
that describes abrupt changes in the grayscale. As early as 2000, an algorithm [26] based on
Laplacian variance was proposed to measure sharper focus. The boundary in a clear image
is clear, and the Laplacian variance is large; the boundary information of a blurred image
is less clear, and the variance is small. Therefore, the Laplacian operator can be used for
image blur detection, and in this paper we choose this method to measure the blur degree
of underwater images.
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The algorithm steps are as follows. Firstly, we convolve a certain channel of the picture
(generally use gray values) with a Laplacian mask and then calculate the variance (the
square of the standard deviation) of the response as the ambiguity of the image. We set the
average blur of all frames as the threshold for judging clarity, and then filter out the frames
that are lower than the threshold.

3.2. Extract Key Frames

In this section, the key frame extraction algorithm based on clustering is elaborated. In
machine learning, clustering is an unsupervised learning method used for data grouping.
Clustering divides a data set into different classes or clusters according to a certain standard
(such as a distance criterion). When it comes to key frame extraction, the crucial issue of
the clustering process is the choice of clustering criteria [27,28]. The key frame extraction
method based on clustering can be divided into 2 steps, and the pseudocode of the key
frame extraction algorithm is shown in Algorithm 1:

Algorithm 1 Key Frame Extraction

Input: Finitial = {F1, F2, . . . , Fn} Initial frames
Output: Fkey = {F1, F2, . . . , Fk} Key frames
procedure1: Dendrogram Construction
1: features of initial frames: f = { f1, f2, . . . , fn};
2:
{

Dij

∣∣∣i, j = 1, 2, . . . , n
}

Distances← pdist (features);

3: while (num of clusters > 1):
merge the clusters with smallest distance;
calculate distances between new cluster and old clusters;

end procedure1
procedure2: Key frame extraction
4: t← OTSU (Dij)
5: num of clusters k← fcluster (dendrogram, t)
6: Fkey = {F1, F2, . . . , Fk} ← extract clustering centers
end procedure2

procedure1: Dendrogram Construction

Step 1: Extract features of image sequence f = { f1, f2, . . . , fn} from initial frames
Finitial = {F1, F2, . . . , Fn}.

Differing from other kinds of data, the image data are all high-dimensional. If we
directly use the Euclidean distance between the image data as the standard for clustering,
the calculation is too large and may lead to memory overflow. In step 1, instead of
calculating Euclidean distances among images, we use LBP and HSV fusion features. An
LBP (local binary pattern) [29] is an operator used to describe the local texture features of an
image. It has significant advantages, such as gray invariance and rotation invariance, and
it is easy and efficient to calculate. Additionally, the LBP feature is robust to illumination
changes, and uneven illumination may occur underwater, so it is suitable for underwater
image description. HSV (hue, saturation, value) is a kind of color space created by A.
R. Smith in 1978 [30] according to the intuitive characteristics of color, and it is closer to
people’s experience and perception of color than RGB. In addition, HSV features describe
the global features of the image, while LBP features describe the local texture information
of the image, so their fusion can describe a frame more comprehensively. Due to the
low saturation of underwater images, the saturation component in the HSV space is not
convincing as an image feature. At the same time, due to the uneven illumination of the
underwater environment, the V component in the HSV space can better represent the
difference between frames. Therefore, we use the combination of H and V components in
the HSV space with the image’s LBP features to refine the local feature of the image.

Step 2: Compute distances
{

Dij
∣∣i, j = 1, 2, . . . , n

}
between frames with the pdist func-

tion in SciPy (an open-source Python algorithm library and math toolkit).
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Step 3: Generate a dendrogram through the while loop.
Hierarchical clustering is an iterative process of continuously calculating the class

spacing and merging the classes with the smallest distance until there is only one class
left and results in a dendrogram. Which is shown in Figure 3, the abscissa of dendrogram
represents the sample number, and the ordinate represents the distance between clusters.
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procedure2: Key frame extraction

Step 4: Obtain the adaptive threshold t to split the dendrogram with the OTSU algorithm.
Different clustering results can be obtained via segmentation at a specific level accord-

ing to a threshold, so the determination of the segmentation threshold is very important.
In this paper, we use the OTSU algorithm [31] to obtain an adaptive threshold to split

the dendrogram, which is often used to determine the threshold during image binariza-
tion. The basic idea of the OTSU algorithm is to divide the samples into two categories
based on the threshold, whereby the greater the variance between the two categories,
the better the classification. First, we calculate the interclass variance with all sample
values as the threshold and take the value corresponding to the maximum variance as the
optimal threshold.

Step 5: Split the dendrogram by t with the fcluster function in SciPy and extract
clustering centers Fkey = {F1, F2, . . . , Fk} as the output key frames.

3.3. UW Image Enhancement

Due to the complexity of the marine environment, the quality of images underwater is
influenced by the attenuation and scattering of light. Regarding light attenuation, different
propagation characteristics of light with different wavelengths in water result in issues
such as color distortion, blurred vision, and reduced contrast in images collected by the
underwater optical sensor. In addition, light scattering resulting from suspended particles
may cause images to be noisy and smoggy, and this leads to problems such as blurred
edges and a lack of detail. Additionally, when the light irradiates the object in the water, it
will scatter when it meets the impurities in the water and it will be directly received by the
camera, resulting in the low contrast of the image.

Considering images acquired in different environments, here we use two algorithms
to enhance the image sequence automatically: method 1 targets underwater images with
red channel degradation, and method 2 targets images with impaired sharpness.



Appl. Sci. 2022, 12, 5918 7 of 17

Method 1: For shallow water environments with enough natural light, there is no
need for external lighting equipment. Still, the longer-wavelength red light will decay
faster than blue or green light, and blue-green tones will dominate the image. In this paper,
we perform the image fusion based on a red channel prior method [18] with improved
histogram equalization. The red channel prior method is improved based on the dark
channel prior (DCP) method [19], and it recovers some of the visibility while correcting the
color attenuation. The histogram equalization method can compensate for the difficulty
in differentiating gray levels visually, making it a powerful tool for adaptive contrast
enhancement. The complete algorithm flow is shown in Figure 4.
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Firstly, we restore the original image with the red channel prior method and obtain the
initial restoration image. Secondly, as our method specifically aims at the red channel, we
eliminate the low-frequency regions before histogram equalization. In our method, we use
the gradient as the standard of filtration, whereby the area where the gradient value is close
to 0 is the low frequency region, so we note the gray value of the area as 0 and obtain a new
grayscale histogram. In the end, histogram equalization is applied to further enhance the
red channel, and then we remerge the three channels to obtain the final restored image.

Our results are shown in Figure 5, (b) and (d) are histograms of the original image
(a) and enhanced image (c) respectively, the R/G/B histograms of (a) and (c) has pixels
in the range of 0–255, and the pixel values are evenly distributed on the x-axis, and
the y-axis represents the number of pixels corresponding to each pixel value. We can
see the color histogram is more balanced after enhancement, and the red component is
significantly increased. From another point of view, it can be seen from (c) that the image
quality and color is improved comparing with (a), and there are more details in image
(c) so more feature points can be detected. We also use UIQM [32], which is a linear
combination of a color measurement index (UICM), clarity measurement index (UISM),
and contrast measurement index (UIConM). It targets the degradation mechanism and
imaging characteristics of underwater images, whereby the larger the value, the better the
color balance, clarity, and contrast of the image.
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Method 2: As for water without enough light, it is necessary to use external lighting
equipment, and the image quality will be reduced due to the scattering of suspended
objects. In such situations, we switch to another mode [33] to enhance the images. The
method proposed by Liu and Gong et al. improves the quality of the whole picture;
enhances the quality of the most important, useful, and task-related information; and
weakens the information of areas of no interest. The result is shown in Figure 6, where
it is can be seen that the quality in (b) is greater than the original image, which not only
improves the quality of the pixels, but also enhances the target’s information and suppresses
irrelevant background information effectively. We can see in Figure 6 that the UIQM of
image (b) is higher than image (a), which means that the quality of the image underwater
is greatly enhanced.
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4. LTS-L1RA

For the reconstruction of an underwater scene, global SFM is more suitable for the
following reasons. On the one hand, it is more efficient for the whole terminal processing
system described in Figure 1. Additionally, there is no need to consider the choice of initial
pairs or the adding orders of cameras, which is an indispensable step in the incremental
method, especially in such a complicated underwater environment.

In this paper, we use the camera translation registration method based on the
ACRANSAC [34] proposed in 2013 [6] to solve the translation averaging problem, and
we come up with a more efficient method for robust rotation averaging based on robust
regression. In addition, we give an introduction to the existing methods used for rotation
averaging in Section 4.1 and elaborate on our method in Section 4.2.

4.1. Existing Methods for Rotation Averaging

Before the rotation averaging, we obtain the relative rotations Rij and relative trans-
lations tij from image pairs by decomposing the essential matrix Eij. Equation (3) shows
the construction of the essential matrix, the product of the antisymmetric matrix of the
translation vector tij, and the rotation matrix Rij.

Eij = tij
ˆRij (3)

With the relative rotations, we can construct a view graph G = {V, ε}, where V
represents cameras and ε represents epipolar constraints between pairwise cameras. Global
rotations Rglobal = {R1, R2 . . . , Rn} are solved from a set of relative rotations Rij between
camera coordinate systems, and this process is called rotation averaging (RA). In the case
of feature matching with outliers, the problem is converted to an appropriate minimization
problem as Equation (5), which satisfies Equation (4). In Equation (5), d(Rij, RjRi

−1) means
the distance measure between observations Rij and the current global estimate Ri, Rj.

Rj = RiRij (4)

argmin
Rglobal

∑
(i,j)∈ε

d(Rij, RjRi
−1)

2
(5)

Many scientists have proposed different methods to solve the rotation averaging
problem described above. In 2004 [35], Govindo firstly proposed to solve the rotation
problem using the Lie algebra, while in 2007 [36] Mcartinec and Pajdla estimated absolute
rotations simply and quickly by solving the problem linearly using the least squares method.
After that in 2013 [25], a more efficient and accurate method was raised, which used a
modern l1-norm [37] optimization method to solve a linear system of equations such as
in Equation (9), which is based on the Lie group and Lie algebra. The group formed
by the rotation matrix R is the Lie group SO(3). Each Lie group has corresponding Lie
algebra so(3), and the method for mapping the Lie group to the Lie algebra is logarithmic
mapping (Equation (6)). In contrast, the mapping of the Lie algebra to the Lie group
involves exponential mapping (Equation (7)). The Lie algebraic form of Equation (4) can be
expressed as Equation (8). According to Equation (8), Equation (9) can be regarded as a
set of simultaneous equations. In Equation (9), A is a sparse matrix that is constructed of
0 and 1, whereby the meaning of every row represents a pair of cameras; vglobal , vrelative
correspond to the Li algebra of global rotations and relative rotations. In [25], the results
were refined using the iteratively reweighted least squares (IRLS) method [38].

R = exp(v )̂ ∈ SO(3) (6)

vˆ = log(R) ∈ so(3) (7)



Appl. Sci. 2022, 12, 5918 10 of 17

RiRij = Rj ⇒ evi
ˆ
evij

ˆ
= evj

ˆ
⇒ vij = vj −vi = [. . .− 1 . . . 1 . . .]︸ ︷︷ ︸

Aij

vglobal (8)

Avglobal = vrelative (9)

In this paper, we enhance the efficiency of the rotation averaging based on l1-norm
optimization and the robust regression method, and the details of our algorithm are shown
in Section 4.2.

4.2. LTS-L1RA Algorithm

In this paper, we come up with a more efficient method based on the L1RA (l1− norm
rotation averaging) and c-step methods.

In 2013 [35], Govindo firstly minimized and estimated the global rotations robustly.
In the L1RA algorithm, the initial guesses for global rotations Rglobal = {R1, R2, . . . , Rn}
are firstly calculated according to Equation (4) and then the sparse matrix A is constructed.
After this comes the iterative optimization process, whereby each iteration recalculates the
error of the relative rotation vector vrel (step 1: calculate ∆Rij, the discrepancy between
the observations Rij, and the current global estimate; step 2: convert ∆Rij to ∆vij due to

Equation (7)) and then minimizes
∥∥∥A∆vglobal − ∆vrel

∥∥∥
l1

with l1 minimization to obtain
∆vglobal (step 3) and update the global rotations (step 4). The iteration stops once the error
meets the requirement.

A review of the L1RA method is shownas Algorithm 2.

Algorithm 2 l1− norm Rotation Averaging

Input: Rij =
{

Rij1, Rij2, . . . , Rijk

}
Relative Rotations

Output: Rglobal = {R1, R2, . . . , Rn} Global Rotations
Initialization: Initial guess
Function name and argument: L1(Rrelatives, Rguess)
A← compute sparse matric from relative rotations
while ‖vrel‖ < ε do:

1: ∆Rij = Rj
−1RiRij

2: ∆vij = log(∆Rij)

3: solve A∆vglobal = ∆vij (minimize
∥∥∥A∆vglobal − ∆vrel

∥∥∥
l1

)

4: Rnew = Rold exp(∆vglobal)

end while

The LTS (least trimmed squares) method is a robust regression method that was pro-
posed by Rousseeuw in 2006 [38]. They raised a new basic idea that makes it possible to
compute a more approximate solution starting from any approximation to the LTS regres-
sion coefficients, and this process is called the c-step, where c stands for the ‘concentration’.
The c-step is an iterative process, which iteratively fits the h-subset (a subset of h cases out
of n samples) with the smallest error until reaching convergence, while the pseudocode of
each iteration in the c-step is shownas Algorithm 3.

Algorithm 3 Pseudocode of C-step

1: estimate the regression coefficient vold based on the complete sample set H
2: compute the residuals based on H and sort according to ascending order:

eold(i), i = 1, 2, . . . , n
3: put Hnew as h samples with the smallest error
4: estimate the regression coefficient vnew based on Hnew

In the c-step, the regression coefficient vold is firstly estimated based on set H, then we
compute the residuals eold(i), i = 1, 2, . . . , n based on H and sort them according to ascend-
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ing order. Then, we extract h samples Hnew with the smallest error, and the breakdown
value h is always set as n/2 to n, which is the ratio of dirty data that can exist before making
an incorrect estimate. In step 4, the new regression coefficient vnew is estimated based on
Hnew. Additionally, it was demonstrated in [39] that often the robust solution is obtained
after two or three c-steps; that is, step 2 and step 3 are repeated in the pseudocode above,
which makes the convergence faster.

The details of the LTS-l1RA method are shown in Algorithm 4.

Algorithm 4 Least trimmed squares (LTS)-L1RA

Input: Rij =
{

Rij1, Rij2, . . . , Rijk

}
Relative Rotations

Output: Rglobal = {R1, R2, . . . , Rn} Global Rotations
Initialization: Initial guess, h = 0.75k
procedure1: c-steps
Rnew = Initial guess
for I in range (3):

1:Rold = Rnew
2: compute errors of Rold in degrees:

for all (i, j) ∈ Rij, Ri, Rj ∈ Rold do:
∆Rij = Rj

−1RiRij
θij = arccos(tr(∆Rij)− 1)/2

end for
3: H← sort (errors of Rold in degrees) [:h]
4: compute Rnew := l1RA based on Rij[H]:
5: Rnew ← L1 (Rij[H],Rold)

end for
end procedure1
procedure2: L1RA on subsets of k cases
6: compute Rglobal := L1RA based on Rij =

{
Rij1, Rij2, . . . , Rijk

}
until convergence

end procedure2

In our method, we firstly use L1RA (l1− norm rotation averaging) based on the h-
subset with the smallest errors in degrees three times due to the fast convergence character
of the c-steps described above. We set the breakdown value h as 0.75k (the parameter k
corresponds to the total number of samples, while h corresponds to the coverage of the
total samples, which means a subset of h cases) in our method based on [39] in order to
obtain a good balance between the breakdown value and statistical efficiency. In this step,
we can quickly estimate the initial guess of the global rotations Rnew based on small-scale
samples with the lowest errors in degrees through 3 c-steps (step 1–step 5). After this, in
procedure 2, we minimize the l1− norm based on all samples until we reach algorithm
convergence and obtain the final global estimate Rglobal (step 6).

5. Global SFM-PMVS Pipeline

In this section, we review the whole 3D reconstruction pipeline. The SFM-PMVS
method consists of the following steps: (1) extract features and match features; (2) construct
a view graph; (3) compute camera motions using rotation averaging and translation aver-
aging; (4) obtain the sparse structure and optimize it with bundle adjustments, then finally
compute the dense point cloud with PMVS.

Step 1: feature extraction and feature matching.
We use SIFT [40] to extract image features, which is a scale-invariant feature descriptor

with advantages in terms of stability, efficiency, and abundance (a large number of features
even though the object is extremely small). The quality of an image may be greatly reduced
because of poor contact and spectral distortion in underwater scenes, whereby SIFT can
extract enough features. The 128-dimensional feature descriptor obtained by the SIFT
algorithm can be used to match features between two images. We use KNN-match (a
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feature matching method based on the K nearest neighbor algorithm [41] provided by
opencv) to obtain matching points, and filter the matched points using the essential matrix.

Step 2: View graph construction.
We construct the view graph by finding the epipolar geometry (internal projective

relationship between two views, which depends on the relative position and camera’s
internal parameters) between images. In the view graph, each vertex represents a camera
and each edge means that relative motions between two cameras can be estimated. In
our strategy, we use the rotation angle to represent the weight of the edge and construct a
minimum spanning tree as the final view graph.

Step 3: Robust Rotation Averaging and Translation Averaging.
After step 1 and step 2, we can begin to compute the global rotation with the relative

rotations. As described in Section 4.2, we use the LTS-L1RA method to compute global
rotations. Then, we use the ACRANSAC method for the camera pose registration described
in [6] to fulfill the translation averaging.

Step 4: Triangulation, Bundle Adjustment, and PMVS.
Through the robust estimation of global rotations and poses in step 3, we can recover

the scene structure from the motion. In this step, we compute the 3D point positions via
triangulation and then refine the structure and motions via bundle adjustment. After this,
in order to provide a better visual effect, we use the PMVS [42] toolkit to obtain a dense
point cloud.

6. Experiments
6.1. LTS-L1RA Confirmation Experiment

In order to prove the advantage of the LTS-L1RA in terms of efficiency, we provide a
comprehensive evaluation of the accuracy and efficiency, which shows the performance
of the L1RA-IRLS (l1-norm rotation averaging–iteratively reweighted least squares) and
LTS-L1RA methods.

We use the ‘Notredame’ dataset as experimental data, which was published by Wilson
and Snavely [13] in 2014, and includes 64,678 relative rotations and 715 cameras.

We set 5 indicators to analyze and compare the algorithms, measuring the running
time in second, mean errors in degrees, RMS error in degrees, processing rate, and mean
error/processing rate. The error in degrees calculation formula is shown in Equation (10),
where RjRi

−1Rij
−1 is the discrepancy between observations Rij and the global estimate

Ri, Rj, ∆θ is the error in degrees, and the Equation (11) is the mean error in degrees.
Equation (12) is the RMS error in degrees, where the number of camera pairs divided by
the running time is the processing rate. The experiment was performed on Ubuntu 16.04
(CPU frequency: 2.50 GHz) and the result of test is shown in Table 1:

∆θ = arccos(
tr(RjRi

−1Rij
−1)− 1

2
) (10)

∆θmean =
k

∑
i=1

∆θi/k (11)

∆θRMS =

√√√√ k

∑
i=1

∆θi
2/k (12)

Due to the experimental data shown above, we can see that the LTS-L1RA method
has a shorter running time compared to L1RA-IRLS, with a slightly higher mean error and
lower RMS error. We can see that the processing rate is increased by 24.96%. In order to
evaluate the algorithm synthetically, we include a new parameter in our experiment to
measure the overall efficiency of the algorithm, the mean error/processing rate. We can
see that it is 19.11% lower than for L1RA-IRLS, meaning our method performs better in
efficiency than L1RA-IRLS.
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Table 1. Efficiency verification test.

Parameter
Method

L1RA-IRLS LTS-L1RA Comparison

Running time (s) 106.712 85.400 −19.97%
Mean error(degree) 3.394 3.432 +1.12%
RMS error (degree) 7.274 7.161 −1.55%

Processing rate (Amount of data/s) 606.099 757.354 +24.96%
Mean error/processing rate 5.6× 10−3 3.7× 10−3 −19.11%

6.2. Pool Experiment

The experiment was carried out in a pool measuring 3 m× 4 m× 1 m. The camera was
equipped with a waterproof case and lighting device, and can be seen in Figure 7. In order
to simulate the AUV’s shooting effect, the camera was fixed to the rod to shoot around
the target. As shown in Figure 6, the experimental equipment includes a camera with a
lighting device, which is shown on the left, while the experimental environment is shown
on the right, where red lines represent the motion trajectory of the camera. We respectively
experiment with lights on and off in the same route. Additionally, the parameter list for the
experiment is shown in Table 2.
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Table 2. Experiment parameters.

Name Configuration

Pool 3 m × 4 m × 1 m
Medium Water with suspended matter

Calibration board GP100
Camera With waterproof case and lighting device

Frame Width 1920 pixels
Frame Height 1080 pixels

Frame Rate 60 FPS (frames per second)
Environment Python 3.5, Ubuntu 16.04

Visualization tool MeshLab
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We firstly obtain the image sequence by using the key frame extraction algorithm
proposed in Section 3.2, and the 3D reconstruction results based on the image sequence are
shown in Figure 8.
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In Figure 8, image (a), (b) are original underwater images with natural light and
external light device, and image (c), (d) are the point cloud calculated based on original
image sequence. The point cloud based on the image sequence enhanced by the image
enhancement method described in Section 3.3 are shown in image (e) and (d). We can see
that after image enhancement the red channel recession has been greatly reduced and there
are more point clouds in image (e). Also, we can see that there is much noise caused by
suspended matter scattering in image (d), it is shown in image (f) that after enhancement
there are much less noise and better color performance.

In Figure 9, we show an independent experiment performed in the air. The result
shows better color information; in other words, our image enhancement algorithm is still
insufficient. In Table 3, we compare the number of bytes from the video streams and the
corresponding point cloud data. We can see our method reduces the transmission costs by
74.21% and 64.22% in the underwater experiment above, meaning it can greatly save on
transmission costs when data are transferred through wireless acoustic communication.
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Table 3. Data compression results.

Environment Video Point Cloud Comparison

Enough light 140 MB 36.1 MB −74.21%
Insufficient light 72.1 MB 25.8 MB −64.22%

7. Result

In this work, we have presented a new pipeline based on an underwater acousto-
optical fusion imaging system, specifically designed based on an underwater optical
system. Firstly, a hierarchical clustering algorithm with adaptive threshold was proposed,
which automatically determines the threshold of clustering by using the maximum inter-
class variance method, which is more convenient for automatically extracting key frames.
Secondly, in order to enhance the quality of the image underwater, we proposed an image
enhancement algorithm based on the red channel prior and histogram equilibrium methods,
which was verified as being effective. In addition, a more efficient rotation averaging
algorithm was devised in our paper, and the efficiency of our method was verified by
comparing it with the L1RA-IRLS method on the same dataset. At last, we performed an
experiment in a swimming pool using our method, and the dense point cloud of the model
was given in the article.

8. Future

Regarding the complex and changeable environment underwater, there are various
degrees of degeneration with underwater images. Additionally, as for large-scale scenes, a
wireless distribution system [43] is needed to detect targets underwater. For a more efficient
and detailed system, in the future we will integrate an image analysis module to judge
different image problems and use different image enhancement algorithms to improve the
image quality. Additionally, in order to improve the efficiency of the system, we will drive
the AUV cluster to complete the target detection and calculate the point clouds separately
with the AUV positioning technology [44], and then send the data back to the leader ship
and perform the point cloud registration and fusion processes. For another typical problem
with underwater images, due to waterproof housing being needed for underwater cameras,
light will pass through three mediums, namely water, glass, and air, which cause twice the
refraction before arriving at the optical sensor. In the future, we will take the refraction into
consideration, which can improve the accuracy of the scene structure estimation.
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