Discussions on the Properties of Emulsion Prepared by Using an Amphoteric Chitosan as an Emulsifier
Abstract
:Featured Application
Abstract
1. Introduction
Improved Properties | Modified Method | Test | Reference |
---|---|---|---|
stability | SSL (sodium stearoyl 2-lactylate) /chitosan | steady shear rheometry | [10] |
stability | anionic surfactant–chitosan complexes | adsorption kinetics | [11] |
stability | chitosan/lithium dodecyl sulfate complexes | turbidity measurements | [12] |
stability | chitosan-graft-oligoN-isopropylacrylamide-graft-oligolysine (CSNLYS) copolymers | solubility, cloud point and interfacial tensions | [13] |
stability | different molecular weight and degree of acetylation | electrophoretic mobility | [20] |
Stability | cationic type surfactant | storage stability, settlement, sieve test | [21] |
stability | chitosan previously dispersed in lactic acid solutions | rheological assays | [22] |
stability | pH value control | dynamic interfacial pressure | [23] |
stability | pH value control | electrophoretic mobility, antibacterial activity | [24] |
emulsification efficiency | addition of Escherichia coli | emulsification index, droplet size | [25] |
emulsification efficiency | addition of tapioca starch | elongation at break, water vapor permeability | [26] |
antimicrobial activity | molecular weight of chitosan, degree of deacetylation | bacteria growth | [27] |
water-binding sites | carboxymethyl-hexanoyl chitosan hydrogel | moisture-retention ability and drug encapsulation | [17] |
nanostructural evolution | carboxymethyl-hexanoyl chitosan | critical aggregation concentration (cac) and zeta potential | [28] |
emulsion breakdown | increased degree of deacetylation | chitosan–oil aggregation | [29] |
2. Experimental Section
2.1. Synthesis of Amphoteric N-octyl-O-sulfate Chitosan
2.2. Emulsion Preparation
2.3. Characterization Method
3. Results and Discussion
3.1. Chitosan Conversion from Chitin to Chitosan
3.2. Transmittance Test
3.3. Bacteria and Moisturizing Test
3.4. Stability Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Zhang, H.; Li, R.; Liu, W. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review. Int. J. Mol. Sci. 2011, 12, 917–934. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Embree, H.D.; Wu, L.Q.; Payne, G.F. In vitro protein- polysaccharide conjugation: Tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers 2002, 64, 292–302. [Google Scholar] [CrossRef]
- Chen, K.; Liao, Y.W.J.; Kuo, S.M.; Tsai, F.J.; Chen, Y.S.; Huang, C.Y.; Yao, C.H. Asymmetric chitosan membrane containing collagen I nanospheres for skin tissue engineering. Biomacromolecules 2009, 10, 1642–1649. [Google Scholar] [CrossRef] [PubMed]
- Anchisi, C.M.; Meloni, C.; Maccioni, A.M. Chitosan beads loaded with essential oils in cosmetic formulations. Int. J. Cosmet. Sci. 2007, 29, 485–486. [Google Scholar] [CrossRef]
- Yamada, K.; Akiba, Y.; Shibuya, T.; Kashiwada, A.; Matsuda, K.; Hirata, M. Water purification through bioconversion of phenol compounds by tyrosinase and chemical adsorption by chitosan beads. Biotechnol. Prog. 2005, 21, 823–829. [Google Scholar] [CrossRef]
- Desbrières, J.; Guibal, E. Chitosan for wastewater treatment. Polym. Int. 2018, 67, 7–14. [Google Scholar] [CrossRef]
- Sofiane, B.; Sofia, K.S. Biosorption of heavy metals by chitin and the chitosan. Der Pharma Chem. 2015, 7, 54–63. Available online: www.derpharmachemica.com/pharma-chemica/biosorption-of-heavy-metals-by-chitin-and-the-chitosan.pdf (accessed on 25 March 2022).
- Sutirman, Z.A.; Sanagi, M.M.; Karim, K.J.A.; Naim, A.A.; Ibrahim, W.A.W. Chitosan-based adsorbents for the removal of metal ions from aqueous solutions. Malays. J. Anal. Sci. 2018, 22, 839–850. Available online: www.ukm.my/mjas/v22_n5/pdf/Azalea_22_5_11.pdf (accessed on 26 March 2022).
- Semeraro, P.; Fini, P.; D’Addabbo, M.; Rizzi, V.; Cosma, P. Removal from wastewater and recycling of azo textile dyes by alginate-chitosan beads. Int. J. Agric. Environ. Biotechnol. 2017, 2, 1835–1850. [Google Scholar] [CrossRef] [Green Version]
- Zinoviadou, K.G.; Moschakis, T.; Kiosseoglou, V.; Biliaderisa, C.G. Impact of emulsifier-polysaccharide interactions on the stability and rheology of stabilized oil-in-water emulsions. Procedia Food Sci. 2011, 1, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Zinoviadou, K.G.; Scholten, E.; Moschakis, T.; Biliaderis, C.G. Engineering interfacial properties by anionic surfactant–chitosan complexes to improve stability of oil-in-water emulsions. Food Funct. 2012, 3, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Vongsetskul, T.; Phaenthong, K.; Chanthateyanonth, R.; Sunintaboon, P.; Tangboriboonrat, P. Emulsions stabilized by chitosan/lithium dodecyl sulfate complexes. Chiang Mai J. Sci. 2015, 42, 393–400. Available online: epg.science.cmu.ac.th/ejournal/journal-detail.php?id=5760 (accessed on 30 March 2022).
- Oh, B.H.L.; Bismarck, A.; Chan-Park, M.B. Modified chitosan emulsifiers: Small compositional changes produce vastly different high internal phase emulsion types. J. Mater. Chem. B 2015, 3, 4118–4122. [Google Scholar] [CrossRef] [PubMed]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. Available online: www.ncbi.nlm.nih.gov/pmc/articles/PMC5094803 (accessed on 31 March 2022).
- Riva, R.; Ragelle, H.; Rieux, A.; Duhem, N.; Je´rome, C.; Pre´at, V. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv. Polym. Sci. 2011, 244, 19–44. Available online: link.springer.com/chapter/10.1007/12_2011_137 (accessed on 1 April 2022).
- Rodrigues, S.; Dionísio, M.; López, C.R.; Grenha, A. Biocompatibility of chitosan carriers with application in drug delivery. J. Funct. Biomater. 2012, 3, 615–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.Y.; Chen, S.Y.; Lin, Y.L.; Liu, D.M. Synthesis and characterization of amphiphatic carboxymethyl-hexanoyl chitosan hydrogel: Water-retention ability and drug encapsulation. Langmuir 2006, 22, 9740–9745. [Google Scholar] [CrossRef]
- Yang, M.C.; Tseng, Y.Q.; Liu, K.H.; Cheng, Y.W.; Chen, W.T.; Chen, W.T.; Hsiao, C.W.; Yung, M.C.; Hsu, C.C.; Liu, T.Y. Preparation of amphiphilic chitosan–graphene oxide–cellulose nanocrystalline composite hydrogels and their biocompatibility and antibacterial properties. Appl. Sci. 2019, 9, 3051. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.H.; Chen, B.R.; Chen, S.Y.; Liu, D.M. Self-assembly behavior and doxorubicin-loading capacity of acylated carboxymethyl chitosans. J. Phys. Chem. B 2009, 113, 11800–11807. [Google Scholar] [CrossRef]
- Aguilar, M.C.A.; Coronel, P.C.R.; Alvarado, D.A.L.; Sanchez, F.E.V.; Alcivar, R.T. Oil-in-water (o/w) emulsionable concentrate of ishpink (ocotea quixos) with thermodynamics stability. Agronomia Rev. Caatinga 2019, 32, 590–598. [Google Scholar] [CrossRef]
- Goycoolea, F.M.; Milkova, V. Electrokinetic behavoir of chitosan adsorbed on o/w nanoemulsion droplets. Colloids Surf. A Physicochem. Eng. Asp. 2017, 519, 205–211. [Google Scholar] [CrossRef]
- Mallawarachchi, D.R.; Amarasinghe, A.D.U.S.; Prashantha, M.A.B. Suitability of chitosan as an emulsifier for cationic bitumen emulsions and its behaviour as an additive to bitumen emulsion. Constr. Build. Mater. 2016, 102, 1–6. [Google Scholar] [CrossRef]
- Soares, L.D.S.; Faria, J.T.; Amorim, M.L.; Araújo, J.M.; Minim, L.A.; Coimbra, J.S.R.; Teixeira, A.V.N.C.; Oliveira, E.B. Rheological and physicochemical studies on emulsions formulated with chitosan previously dispersed in aqueous solutions of lactic acid. Food Biosci. 2017, 12, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Heuzey, M.C. Chitosan-based conventional and pickering emulsions with long-term stability. Langmuir 2016, 32, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, R.A.; Wang, M.; Qi, Z.; Hira, N.; Jiang, J.; Zhang, H.; Iqbal, S.; Wang, J.; Stuart, M.A.C.; Guo, X. Pickering emulsions based on the pH-responsive assembly of food-grade chitosan. ACS Omega 2021, 6, 17915–17922. [Google Scholar] [CrossRef]
- Archakunakorn, S.; Charoenrat, N.; Khamsakhon, S.; Pongtharangkul, T.; Wongkongkatep, P.; Suphantharika, M.; Wongkongkatep, J. Emulsification efficiency of adsorbed chitosan for bacterial cells accumulation at the oil–water interface. Bioprocess Biosyst. Eng. 2015, 38, 701–709. [Google Scholar] [CrossRef]
- Pratama, Y.S.; Abduh, B.M.; Legowo, A.M.; Hintono, A. Effect of chitosan-palm olein emulsion incorporation on tapioca starch-based edible film properties. Int. Food Res. J. 2019, 26, 203–208. Available online: www.ifrj.upm.edu.my/26%20%202019/(22).pdf (accessed on 2 April 2022).
- Zivanovic, S.; Basurto, C.C.; Chi, S.; Davidson, P.M.; Weiss, J. Molecular weight of chitosan influences antimicrobial activity in oil-in-water emulsions. J. Food Prot. 2004, 67, 952–959. [Google Scholar] [CrossRef]
- Liu, K.H.; Chen, S.Y.; Liu, D.M.; Liu, T.Y. Self-assembled hollow nanocapsule from amphiphatic carboxymethyl-hexanoyl chitosan as drug carrier. Macromolecules 2008, 41, 6511–6516. [Google Scholar] [CrossRef] [Green Version]
- Helgason, T.; Weiss, J.; McClements, D.J.; Gislason, J.; Einarsson, J.M.; Thormodsson, F.R.; Kristbergsson, K. Examination of the interaction of chitosan and oil-in-water emulsions under conditions simulating the digestive system using confocal microscopy. J. Aquat. Food Prod. Technol. 2008, 17, 216–233. [Google Scholar] [CrossRef]
- Jia, B.; Chen, Z.; Xian, C. Investigations of CO2 storage capacity and flow behavior in shale formation. J. Pet. Sci. Eng. 2022, 208, 109659. [Google Scholar] [CrossRef]
- Czechowska-Biskup, R.; Jarosińska, D.; Rokita, B.; Ulański, P.; Rosiak, J.M. Determination of Degree of Deacetylation of Chitosan-Comparison of Methods. Presentation at the Progress on Chemistry and Application of Chitin and its Derivatives, XVII: 5–20 (2012). Available online: www.researchgate.net/publication/257657675_Determination_of_Degree_of_Deacetylation_of_Chitosan (accessed on 3 April 2022).
- Hao, G.; Hu, Y.; Shi, L.; Chen, J.; Cui, A.; Weng, W.; Osako, K. Physicochemical characteristics of chitosan from swimming crab (portunus trituberculatus) shells prepared by subcritical water pretreatment. Sci. Rep. 2021, 11, 1646. Available online: www.nature.com/articles/s41598-021-81318-0 (accessed on 3 April 2022). [PubMed]
- Focher, B.; Naggi, A.; Torri, G.; Cosani, A.; Terbojevich, M. Structural differences between chitin polymorphs and their precipitates from solutions— evidence from CP-MAS 13CNMR, FT-IR and FT-Raman Spectroscopy. Carbohydr. Polym. 1992, 17, 97–102. [Google Scholar] [CrossRef]
- Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006, 63, 367–374. [Google Scholar] [CrossRef]
- Huo, M.; Zhang, Y.; Zhou, J.; Zou, A.; Yu, D.; Wu, Y.; Li, J.; Li, H. Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. Int. J. Pharm. 2010, 394, 162–173. [Google Scholar] [CrossRef]
- Qu, D.; Lin, H.; Zhang, N.; Xue, J.; Zhang, C. In vitro evaluation on novel modified chitosan for targeted antitumor drug delivery. Carbohydr. Polym. 2013, 92, 545–554. [Google Scholar] [CrossRef]
- Roldo, M.; Power, K.; Smith, J.R.; Cox, P.A.; Papagelis, K.; Bouropoulos, N.; Fatouros, D.G. N-octyl-O-sulfate chitosan stabilizes single wall carbon nanotubes in aqueous media and bestows biocompatibility. Nanoscale 2009, 1, 366–373. [Google Scholar] [CrossRef]
- Zhang, C.; Ping, Q.; Zhang, H.; Shen, J. Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohydr. Polym. 2003, 54, 137–141. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, C.-C.; Chen, H.-W.; Wu, H.-T. Discussions on the Properties of Emulsion Prepared by Using an Amphoteric Chitosan as an Emulsifier. Appl. Sci. 2022, 12, 5249. https://doi.org/10.3390/app12105249
Chung C-C, Chen H-W, Wu H-T. Discussions on the Properties of Emulsion Prepared by Using an Amphoteric Chitosan as an Emulsifier. Applied Sciences. 2022; 12(10):5249. https://doi.org/10.3390/app12105249
Chicago/Turabian StyleChung, Chin-Chun, Hua-Wei Chen, and Hung-Ta Wu. 2022. "Discussions on the Properties of Emulsion Prepared by Using an Amphoteric Chitosan as an Emulsifier" Applied Sciences 12, no. 10: 5249. https://doi.org/10.3390/app12105249
APA StyleChung, C.-C., Chen, H.-W., & Wu, H.-T. (2022). Discussions on the Properties of Emulsion Prepared by Using an Amphoteric Chitosan as an Emulsifier. Applied Sciences, 12(10), 5249. https://doi.org/10.3390/app12105249