Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jones, D.; Brischke, C. Performance of Bio-Based Building Materials; Woodhead Publishing: Cambridge, UK, 2017; p. 650. [Google Scholar]
- Werner, F.; Taverna, R.; Hofer, P.; Richter, K. Greenhouse Gas Dynamics of an Increased Use of Wood in Buildings in Switzerland. Clim. Chang. 2006, 74, 319–347. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; p. 487. [Google Scholar]
- Kutnar, A.; Muthu, S.S. Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts; Springer: Berlin/Heidelberg, Germany, 2016; p. 248. [Google Scholar]
- Eaton, R.A.; Hale, M.D.C. Wood: Decay, Pests and Protection; Chapman and Hall Ltd.: New York, NY, USA, 1993; p. 546. [Google Scholar]
- Militz, H. Thermal Treatment of Wood: European Processes and Their Background; Document no. IRG/WP 02-40241; International Research Group on Wood Preservation: Stockholm, Sweden, 2002. [Google Scholar]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Hill, C. Wood modification: An update. BioResources 2011, 6, 918–919. [Google Scholar]
- Čermák, P.; Vahtikari, K.; Rautkari, L.; Laine, K.; Horáček, P.; Baar, J. The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood. J. Mater. Sci. 2016, 51, 1504–1511. [Google Scholar] [CrossRef]
- Gosselink, R.J.A.; Krosse, A.M.A.; van der Putten, J.C.; van der Kolk, J.C.; de Klerk-Engels, B.; van Dam, J.E.G. Wood preservation by low-temperature carbonization. Ind. Crops Prod. 2004, 19, 3–12. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Hautamäki, S.; Lillqvist, K.; Segerholm, K.; Rautkari, L. Surface modification of solid wood by charring. J. Mater. Sci. 2017, 52, 6111–6119. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Turunen, H.; Čermák, P.; Hautamäki, S.; Rautkari, L. Surface-related characteristics of surface-charred spruce wood. Materials 2018, 11, 2083. [Google Scholar] [CrossRef]
- Čermák, P.; Dejmal, A.; Paschová, Z.; Kymäläinen, M.; Dömény, J.; Brabec, M.; Hess, D.; Rautkari, L. One-sided surface charring of beech wood. J. Mater. Sci. 2019, 54, 9497–9506. [Google Scholar] [CrossRef]
- Viitaniemi, P. Thermowood—Modified Wood for Improved Performance. In Proceedings of the 4th Eurowood Symposium ‘Wood—The Ecological Material’, Stockholm, Sweden, 22–23 September 1997; Trätek Rapport No. P9709084. pp. 67–69. [Google Scholar]
- Jämsä, S.; Ahola, P.; Viitaniemi, P. Performance of coated heat-treated wood. Surf. Coat. Int. 1999, 6, 297–300. [Google Scholar] [CrossRef]
- Jämsä, S.; Ahola, P.; Viitaniemi, P. Long-term natural weathering of coated ThermoWood. Pigment Resin Technol. 2000, 29, 68–74. [Google Scholar] [CrossRef]
- Santos, J.A. Mechanical behaviour of eucalyptus wood modified by heat. Wood Sci. Technol. 2000, 34, 39–43. [Google Scholar] [CrossRef]
- Kamdem, D.P.; Pizzi, A.; Jermannaud, A. Durability of heat-treated wood. Holz als Roh Werkstoff 2002, 60, 1–6. [Google Scholar] [CrossRef]
- Repellin, V.; Guyonnet, R. Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung 2005, 59, 28–34. [Google Scholar] [CrossRef]
- Fuwape, J.A. Effects of carbonization temperature on charcoal from some tropical trees. Bioresour. Technol. 1996, 57, 91–94. [Google Scholar] [CrossRef]
- Hakkou, M.; Pétrissans, M.; Zoulalian, A.; Gérardin, P. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Degrad. Stab. 2005, 89, 1–5. [Google Scholar] [CrossRef]
- Frangi, A.; Fontana, M. Charring rates and temperature profiles of wood sections. Fire Mater. 2003, 27, 91–102. [Google Scholar] [CrossRef]
- Byrne, C.E.; Nagle, D.C. Carbonization of wood for advanced materials applications. Carbon 1997, 35, 259–266. [Google Scholar] [CrossRef]
- Weiland, J.J.; Guyonnet, R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh Werkstoff 2003, 61, 216–220. [Google Scholar] [CrossRef]
- Romagnoli, M.; Vittorio, V.; Alessandra, S. Heat treatment effect on lignin and carbohydrates in Corsican pine earlywood and latewood studied by PY–GC–MS technique. J. Wood Chem. Technol. 2018, 38, 57–70. [Google Scholar] [CrossRef]
- Sivonen, H.; Maunu, S.L.; Sundholm, F.; Jämsä, S.; Viitaniemi, P. Magnetic Resonance Studies of Thermally Modified Wood. Holzforschung 2002, 56, 648–654. [Google Scholar] [CrossRef]
- Bhuiyan, M.T.R.; Hirai, N.; Sobue, N. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci. 2000, 46, 431–436. [Google Scholar] [CrossRef]
- Sonderegger, W.; Vecellio, M.; Zwicker, P.; Niemz, P. Combined bound water and water vapour diffusion of Norway spruce and European beech in and between the principal anatomical directions. Holzforschung 2011, 65, 819–828. [Google Scholar] [CrossRef]
- Steinhagen, P.H. Thermal conductive properties of wood, green or dry, from −40 °C to +100 °C: A literature review. In USDA Forest Service General Technical Report FPL-9; Forest Products Laboratory: Madison, WI, USA, 1977. [Google Scholar]
- Wang, W.; Zhu, Y.; Cao, J.; Sun, W. Correlation between Dynamic Wetting Behavior and Chemical Components of Thermally Modified Wood. Appl. Surf. Sci. 2015, 324, 332–338. [Google Scholar] [CrossRef]
- Pétrissans, M.; Gérardin, P.; El Bakali, I.; Serraj, M. Wettability of Heat-Treated Wood. Holzforschung 2003, 57, 301–307. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Doré, G.; Younsi, R. Effect of Heat Treatment on the Wettability of White Ash and Soft Maple by Water. Holz als Roh und Werkstoff 2008, 66, 355–361. [Google Scholar] [CrossRef]
- Šernek, M.; Kamke, F.A.; Glasser, W.G. Comparative Analysis of Inactivated Wood Surface. Holzforschung 2004, 58, 22–31. [Google Scholar] [CrossRef]
- Areias, A.C.; Ribeiro, C.; Sencadas, V.; Garcia-Giralt, N.; Diez-Perez, A.; Gómez Ribelles, J.L.; Lanceros-Méndez, S. Influence of Crystallinity and Fiber Orientation on Hydrophobicity and Biological Response of Poly(l-Lactide) Electrospun Mats. Soft Matter 2012, 8, 5818–5825. [Google Scholar] [CrossRef]
- Gérardin, P.; Petrič, M.; Petrissans, M.; Lambert, J.; Ehrhrardt, J.J. Evolution of Wood Surface Free Energy after Heat Treatment. Polym. Degrad. Stab. 2007, 92, 653–657. [Google Scholar] [CrossRef]
- Lopes, J. de O.; Garcia, R.A.; do Nascimento, A.M. Wettability of the Surface of Heat-Treated Juvenile Teak Wood Assessed by Drop Shape Analyzer. Maderas Ciencia y Tecnología 2018, 20, 249–256. [Google Scholar]
- Kymäläinen, M.; Rautkari, L.; Hill, C.A.S. Sorption Behaviour of Torrefied Wood and Charcoal Determined by Dynamic Vapour Sorption. J. Mater. Sci. 2015, 50, 7673–7680. [Google Scholar] [CrossRef]
- Jang, E.S.; Kang, C.W. Changes in Gas Permeability and Pore Structure of Wood under Heat Treating Temperature Conditions. J. Wood Sci. 2019, 65, 37. [Google Scholar] [CrossRef]
- Romagnoli, M.; Cavalli, D.; Pernarella, R.; Zanuttini, R.; Togni, M. Physical and mechanical characteristics of poor-quality wood after heat treatment. iForest-Biogeosci. For. 2015, 8, 884. [Google Scholar] [CrossRef]
- Virta, J. Cupping of wooden cladding boards in cyclic conditions—a study of heat-treated and non-heat-treated boards. Build. Environ. 2005, 40, 1395–1399. [Google Scholar] [CrossRef]
- Boonstra, M.; Tjeerdsma, B. Chemical analysis of heat treated softwoods. Holz Roh-Werkstoff 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Hill, C. Wood Modification Chemical, Thermal and other Processes; Wiley: Hoboken, NJ, USA, 2006; p. 239. [Google Scholar]
- Kúdela, J.; Čunderlík, I. Beech Wood—Structure, Properties, Use (Bukové Drevo—Štruktúra, Vlastnosti, Použitie); Technická univerzita vo Zvolene: Zvolen, Slovakia, 2012; p. 152. [Google Scholar]
- Bryden, K.M.; Ragland, K.W.; Rutland, C.J. Modeling thermally thick pyrolysis of wood. Biomass Bioenergy 2002, 22, 41–53. [Google Scholar] [CrossRef]
- Metsä-Kortelainen, S.; Antikainen, T.; Viitaniemi, P. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170, 190, 210 and 230 °C. Holz als Roh Werkstoff 2006, 64, 192–197. [Google Scholar] [CrossRef]
- Fortino, S.; Genoese, A.; Genoese, A.; Rautkari, L. FEM simulation of the hygro-thermal behaviour of wood under surface densification at high temperature. J. Mater. Sci. 2013, 48, 7603–7612. [Google Scholar] [CrossRef]
Temperature (°C) | Time I. (min) | Coding | Time II. (min) | Coding |
Reference | - | Ref | ||
200 | 6 | 200/6 | 20 | 200/20 |
250 | 4 | 250/4 | 6 | 250/6 |
300 | 2 | 300/2 | 4 | 300/4 |
350 | 1 | 350/1 | 2 | 350/2 |
400 | 0.5 | 400/0.5 | 1 | 400/1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šeda, V.; Machová, D.; Dohnal, J.; Dömény, J.; Zárybnická, L.; Oberle, A.; Vacenovská, V.; Čermák, P. Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability. Appl. Sci. 2021, 11, 4086. https://doi.org/10.3390/app11094086
Šeda V, Machová D, Dohnal J, Dömény J, Zárybnická L, Oberle A, Vacenovská V, Čermák P. Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability. Applied Sciences. 2021; 11(9):4086. https://doi.org/10.3390/app11094086
Chicago/Turabian StyleŠeda, Vít, Dita Machová, Jakub Dohnal, Jakub Dömény, Lucie Zárybnická, Anna Oberle, Veronika Vacenovská, and Petr Čermák. 2021. "Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability" Applied Sciences 11, no. 9: 4086. https://doi.org/10.3390/app11094086
APA StyleŠeda, V., Machová, D., Dohnal, J., Dömény, J., Zárybnická, L., Oberle, A., Vacenovská, V., & Čermák, P. (2021). Effect of One-Sided Surface Charring of Beech Wood on Density Profile and Surface Wettability. Applied Sciences, 11(9), 4086. https://doi.org/10.3390/app11094086