Three-Dimension Resolution Enhanced Microscopy Based on Parallel Detection
Abstract
:1. Introduction
2. Methods
2.1. Theoretical Analysis
2.2. Experiment Setup
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huff, J. The Airyscan detector from ZEISS: Confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods 2015, 12. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Wilson, T. The theory of scanning microscopes with Gaussian pupil functions. J. Microsc. 1978, 114, 179–197. [Google Scholar] [CrossRef]
- Wilson, T. Resolution and optical sectioning in the confocal microscope. J. Microsc. 2011, 244, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Cox, G.; Sheppard, C.J.R. Practical limits of resolution in confocal and non-linear microscopy. Microsc. Res. Tech. 2003, 63, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Kohler, H. On Abbe’s Theory of Image Formation in the Microscope. Opt. Acta Int. J. Opt. 1981, 28, 1691–1701. [Google Scholar] [CrossRef]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulat-ed-emission-deplation fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef]
- Kuang, C.; Li, S.; Liu, W.; Hao, X.; Gu, Z.; Wang, Y.; Ge, J.; Li, H.; Liu, X. Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy. Sci. Rep. 2013, 3, 1441. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.B.; Enderlein, J. Image Scanning Microscopy. Phys. Rev. Lett. 2010, 104, 198101. [Google Scholar] [CrossRef]
- Zhao, G.; Rong, Z.; Kuang, C.; Zheng, C.; Liu, X. 3D fluorescence emission difference microscopy based on spatial light modulator. J. Innov. Opt. Health Sci. 2016, 9, 1641003. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Chen, Y.; Fang, Y.; Hussain, A.; Kuang, C.; Zhou, X.; Xu, Y.; Liu, X. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy. Opt. Commun. 2017, 405, 157–163. [Google Scholar] [CrossRef]
- Zernike, V.F. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1934, 1, 689–704. [Google Scholar] [CrossRef]
- Gould, T.J.; Burke, D.; Bewersdorf, J.; Booth, M.J. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 2012, 20, 20998–21009. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, C.J.R.; Castello, M.; Tortarolo, G.; Deguchi, T.; Koho, S.V.; Vicidomini, G.; Diaspro, A. Pixel reassignment in image scanning microscopy: A re-evaluation. J. Opt. Soc. Am. A 2019, 37, 154–162. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Super-resolution in Confocal Imaging. Int. J. Light Electron Opt. 1988, 80, 53–54. [Google Scholar]
- Chen, Y.; Liu, S.; Zhang, C.; Zhang, Z.; Kuang, C.; Hao, X.; Liu, X.U. Image scanning difference microscopy. J. Microsc. 2019, 276, 98–106. [Google Scholar] [CrossRef]
- Webb, R.H. Confocal optical microscopy. Rep. Prog. Phys. 1996, 59, 427–471. [Google Scholar] [CrossRef]
- Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination micros-copy. J. Microsc. 2000, 198, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, C.J.R.; Mehta, S.B.; Heintzmann, R. Superresolution by image scanning microscopy Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 2013, 38, 2889–2892. [Google Scholar] [CrossRef]
- You, S.; Kuang, C.; Li, S.; Liu, X.; Ding, Z. Three-dimensional super-resolution imaging for fluorescence emission difference microscopy. AIP Adv. 2015, 5, 084901. [Google Scholar] [CrossRef]
- Wildanger, D.; Medda, R.; Kastrup, L.; Hell, S. A compact STED microscope providing 3D nanoscale resolution. J. Microsc. 2009, 236, 35–43. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Wang, X.; Ji, S.; Zhang, C.; Li, J.; Zhu, W.; Wu, D.; Chu, J. Efficient full-path optical calculation of scalar and vector diffraction using the Bluestein method. Light Sci. Appl. 2020, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Sheppard, C. Theory and Practice of Scanning Optical Microscopy; Academic Press: London, UK; Orlando, FL, USA, 1984; ISBN 0127577602. [Google Scholar]
- Wolf, E. Electromagnetic diffraction in optical systems-I. An integral representation of the image field. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1959, 253, 349–357. [Google Scholar]
- Strambio-De-Castillia, C.; Niepel, M.; Rout, M.P. The nuclear pore complex: Bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 2010, 11, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, S.; He, M.; Huang, Y.; Kuang, C.; Han, Y.; Hao, X.; Liu, X. Three-Dimension Resolution Enhanced Microscopy Based on Parallel Detection. Appl. Sci. 2021, 11, 2837. https://doi.org/10.3390/app11062837
Zhang Z, Liu S, He M, Huang Y, Kuang C, Han Y, Hao X, Liu X. Three-Dimension Resolution Enhanced Microscopy Based on Parallel Detection. Applied Sciences. 2021; 11(6):2837. https://doi.org/10.3390/app11062837
Chicago/Turabian StyleZhang, Zhimin, Shaocong Liu, Minfei He, Yuran Huang, Cuifang Kuang, Yubing Han, Xiang Hao, and Xu Liu. 2021. "Three-Dimension Resolution Enhanced Microscopy Based on Parallel Detection" Applied Sciences 11, no. 6: 2837. https://doi.org/10.3390/app11062837
APA StyleZhang, Z., Liu, S., He, M., Huang, Y., Kuang, C., Han, Y., Hao, X., & Liu, X. (2021). Three-Dimension Resolution Enhanced Microscopy Based on Parallel Detection. Applied Sciences, 11(6), 2837. https://doi.org/10.3390/app11062837