Optimization of Aging Time for Improved Antioxidant Activity and Bacteriostatic Capacity of Fresh and Black Garlic
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BG Extracts
2.3. Analysis of the Biochemical Properties of the Extract
2.3.1. Measurement of pH Level
2.3.2. Determination of Allicin Content
2.3.3. Determination of Total Phenol Content
2.3.4. Free Amino Acid Assay
2.4. Analysis of the Antioxidant Activity of Garlic and BG Extract
2.4.1. Assessing the Capacity of DPPH to Capture Free Radicals
2.4.2. Assessing the Trolox Equivalent Antioxidant Activity (TEAC)
2.4.3. Assessing Superoxide Dismutase (SOD) Activity
2.5. Bacteriostatic Capacity of Fresh Garlic and BG Extracts
2.6. Statistical Analysis
3. Results
3.1. Biochemical Properties of BG during the Aging Process
3.2. Antioxidant Activity of Extracts from Fresh Garlic and BG
3.3. Bacteriostatic Capacity of Extracts from Fresh and Aged Garlic
4. Discussion
4.1. Comparison of the Biochemical Properties and Antioxidant Activity of Garlic and BG Extracts
4.2. Comparison of the Biochemical Properties and Bacteriostatic Capacity of Fresh Garlic and Garlic Aged for Different Durations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wertheim, T. Untersuchung des Knoblauchöls. Ann. Chem. Pharm. 1844, 51, 289–315. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Sun, L.; Chen, M.; Wang, J. An analysis of the changes on intermediate products during the thermal processing of black garlic. Food Chem. 2018, 239, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Ríos, K.L.; Vázquez-Barrios, M.E.; Gaytán-Martínez, M.; Olano, A.; Montilla, A.; Villamiel, M. 2-furoylmethyl amino acids as indicators of Maillard reaction during the elaboration of black garlic. Food Chem. 2018, 240, 1106–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amagase, H.; Petesch, B.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of garlic and its bioactive components. J. Nutr. 2001, 131, 955S–966S. [Google Scholar] [CrossRef] [PubMed]
- Block, E. The chemistry of garlic and onions. Sci. Am. 1985, 252, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Imai, J.; Ide, N.; Nagae, S.; Moriguchi, T.; Matsuura, H.; Itakura, Y. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med. 1994, 60, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Choi, D.J.; Lee, S.J.; Cha, J.Y.; Sung, N.J. Antioxidant activity of black garlic (Allium sativum L.). J. Korean Soc. Food Sci. Nutr. 2008, 37, 965–971. [Google Scholar] [CrossRef]
- Choi, D.J.; Lee, S.J.; Kang, M.J.; Cho, H.S.; Sung, N.J.; Shin, J.H. Physicochemical characteristics of black garlic (Allium sativum L.). J. Korean Soc. Food Sci. Nutr. 2008, 37, 465–471. [Google Scholar] [CrossRef]
- Kimura, S.; Tung, Y.C.; Pan, M.H.; Su, N.W.; Lai, Y.J.; Cheng, K.C. Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal. 2017, 25, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, E.K.; Seo, J.H.; Lee, S.P. Physiological activity and antioxidative effects of aged black garlic (Allium sativum L.) extract. Korean J. Food Sci. Technol. 2008, 40, 443–448. [Google Scholar]
- Toledano-Medina, M.A.; Pérez-Aparicio, J.; Moreno-Rojas, R.; Merinas-Amo, T. Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chem. 2016, 199, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, N.; Lu, X.; Liu, P.; Qiao, X. Effects of temperature on the quality of black garlic. J. Sci. Food Agric. 2015, 96, 2366–2372. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Jung, E.Y.; Kang, D.H.; Chang, U.J.; Hong, Y.H.; Suh, H.J. Physical stability, antioxidative properties, and photoprotective effects of a functionalized formulation containing black garlic extract. J. Photochem. Photobiol. B Biol. 2012, 117, 104–110. [Google Scholar] [CrossRef] [PubMed]
- García-Villalón, A.L.; Amor, S.; Monge, L. In vitro studies of an aged black garlic extract enriched in S-allylcysteine and polyphenols with cardioprotective effects. J. Funct. Foods 2016, 27, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.C.; Jang, H.D.; Lin, W.D. Biochemical properties of black garlic aged under different temperatures of commercial rice wine extracts in Taiwan. J. Food Meas. Charact. 2021, 15, 509–518. [Google Scholar] [CrossRef]
- Chang, T.C.; Jang, H.D.; Lin, W.D.; Duan, P.F. Antioxidant and antimicrobial activities of commercial rice wine extracts of Taiwanese Allium fistulosum. Food Chem. 2016, 190, 724–729. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.C.; Chang, H.T.; Chang, S.T.; Lin, S.F.; Chang, Y.H.; Jang, H.D. A comparative study on the total antioxidant and antimicrobial potentials of ethanolic extracts from various organ tissues of Allium spp. Food Nutr. Sci. 2013, 4, 182–190. [Google Scholar]
- Gyamfi, M.A.; Yonamine, M.; Aniya, Y. Free-radical scavenging action of medicinal herbs from Ghana Thonningia Sanguinea on experimentally-induced liver injuries. Gen. Pharmacol. 1999, 32, 661–667. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; RiceEvans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Fujisawa, H.; Suma, K.; Origuchi, K.; Kumagai, H.; Seki, T.; Ariga, T. Biological and chemical stability of garlic-derived allicin. J. Agric. Food Chem. 2008, 56, 4229–4235. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.S.; Cha, H.S.; Lee, Y.S. Physicochemical and antioxidant properties of black garlic. Molecules 2014, 19, 16811–16823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, T.; Wei, F.; Lu, Y.; Kodani, Y.; Nakada, M.; Miyakawa, T.; Tanokura, M. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. J. Agric. Food Chem. 2015, 63, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, K.H.; Yook, H.S. Analysis of active components of giant black garlic. J. Korean Soc. Food Sci. Nutr. 2015, 44, 1672–1681. [Google Scholar] [CrossRef]
- Lu, X.; Li, N.; Qiao, X.; Qiu, Z.; Liu, P. Composition analysis and antioxidant properties of black garlic extract. J. Food Drug Anal. 2017, 25, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.Y.; Ryu, J.H.; Shin, J.H. Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules 2016, 21, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.M.; Gweon, O.C.; Seo, Y.J. Antioxidant effect of garlic and aged black garlic in animal model of Type 2 diabetes mellitus. Nutr. Res. Pract. 2009, 3, 156–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, E.; Kohno, M.; Hamano, H.; Niwano, Y. Increased antioxidative potency of garlic by spontaneous short-term fermentation. Plant. Foods Hum. Nutr. 2006, 61, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Cavallito, C.J.; Bailey, J.H. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J. Am. Chem. Soc. 1944, 66, 1950–1951. [Google Scholar] [CrossRef]
- Delaha, E.C.; Garagusi, V.F. Inhibition of mycobacterial by garlic extract (Allium sativum). Antimicrob. Agents Chemother. 1985, 27, 485–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marta, C.M.; Nieves, C.; Mar, V. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar]
- Tsao, S.M.; Yin, M.C. In-vitro antimicrobial activity of four diallylsulphides occurring naturally in garlic and Chinese Leek Oils. J. Med. Microbiol. 2001, 50, 646–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, S.M.; Yin, M.C. In vitro activity of garlic oil and four diallyl sulphides against antibiotic-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae. J. Antimicrob. Chemother. 2001, 47, 665–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, M.C.; Chang, H.C.; Tsao, S.M. Inhibitory effects of aqueous garlic extract, garlic oil and four diallyl sulphides against four enteric pathogens. J. Food Drug Anal. 2002, 10, 120–125. [Google Scholar] [CrossRef]
- Reddy, K.V.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents 2004, 24, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Papagianni, M. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol. Adv. 2003, 21, 465–499. [Google Scholar] [CrossRef]
Days | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | |
---|---|---|---|---|---|---|---|---|---|---|
Property | ||||||||||
pH | 6.19 a,* ± 0.11 | 5.67 a ± 0.04 | 4.74 b ± 0.03 | 4.07 c ± 0.03 | 3.85 d ± 0.02 | 3.75 d,e ± 0.01 | 3.60 e,f ± 0.04 | 3.53 f ± 0.07 | 3.53 f ± 0.05 | |
Moisture (%) | 77.50 a ± 3.45 | 72.37 a ± 0.12 | 49.20 b ± 0.24 | 46.60 c ± 0.18 | 41.85 d ± 0.16 | 40.17 d ± 0.11 | 37.89 e ± 0.08 | 34.21 f ± 2.31 | 34.11 f ± 1.18 | |
Allicin (μL/mL) | 2.72 a ± 0.22 | 1.72 b ± 0.43 | 0.56 c ± 0.06 | 0.22 d ± 0.02 | 0.01 d ± 0.00 | ND d,** | ND d | ND d | ND d | |
Total phenol (mg GAE/mL) | 5.85 f ± 0.14 | 5.98 f ± 0.16 | 6.82 e ± 0.12 | 7.45 e ± 0.22 | 9.89 d ± 0.21 | 12.57 c ± 1.08 | 15.48 b ± 0.53 | 16.96 a ± 0.26 | 15.64 a ± 0.48 |
Extracts | Fresh Garlic (mg/100 g) | Garlic Aged for 5 Days (mg/100 g) | Garlic Aged for 10 Days (mg/100 g) | Garlic Aged for 15 Days (mg/100 g) | Garlic Aged for 20 Days (mg/100 g) | Garlic Aged for 25 Days (mg/100 g) | Garlic Aged for 30 Days (mg/100 g) | Garlic Aged for 35 Days (mg/100 g) | Garlic Aged for 40 Days (mg/100 g) | |
---|---|---|---|---|---|---|---|---|---|---|
Free Amino Acid | ||||||||||
Alanine | 65.35 * | 65.19 | 76.27 | 40.75 | 50.73 | 32.44 | 29.29 | 42.03 | 1.06 | |
Arginine | 1036.63 | 1388.83 | 1187.89 | 293.03 | 191.44 | 20.32 | 7.21 | 18.94 | 0.43 | |
Asparagine | 296.47 | 522.77 | 281.41 | 44.55 | 17.99 | 0.73 | - | - | - | |
Aspartic | 15.57 | 151.57 | 35.43 | 25.36 | 31.15 | 24.55 | 23.76 | 2.68 | 0.74 | |
Cystine | - | 61.98 | 19.79 | - | - | - | - | 6.02 | - | |
Glutamic acid | 52.92 | 61.6 | 46.2 | 11.27 | 10.65 | 6.21 | 11.49 | 2.02 | 3.96 | |
Glycine | 2.97 | 1.34 | 3.94 | 4.76 | 4.51 | 1.56 | 1.35 | 2.83 | 0.76 | |
Histidine | 14.21 | 4.16 | 3.07 | 0.95 | - | 0.42 | 0.28 | - | - | |
Isoleucine | 17.05 | 11.16 | 4.49 | 1.27 | 3.16 | 0.73 | 0.52 | 0.81 | - | |
Leucine | 34.73 | 5.38 | 3.26 | 1.51 | 1.91 | 0.47 | 0.35 | 0.4 | - | |
Lysine | 78.57 | 65.78 | 60.07 | 21.95 | 15.76 | 1.76 | 0.45 | 0.81 | - | |
Methionine | 7.68 | 7.46 | 12.75 | 5.28 | 3.36 | 1.55 | 0.11 | 0.25 | - | |
Phenylalanine | 18.84 | 7.6 | 16.94 | 13.13 | 14.98 | 4.73 | 1.61 | - | - | |
Proline | 31.51 | 3.96 | 3.22 | 0.89 | - | - | - | - | - | |
Serine | 55.75 | 12.23 | 13.04 | 9.59 | 4.84 | 1.17 | 0.14 | 0.25 | - | |
Threonine | 21.08 | 12.75 | 12.03 | 8.29 | 5.14 | 0.78 | 0.4 | 0.3 | - | |
Tryptophan | 15.96 | - | - | - | - | - | - | - | - | |
Tyrosine | 46.51 | 6.88 | 8.62 | 7.14 | 5.95 | 1.93 | 0.75 | - | - | |
Valine | 31.32 | 24.56 | 28.63 | 15.94 | 11.18 | 5.7 | 4.3 | 10.08 | - | |
Total amino acid | 1843.12 | 2415.2 | 1817.05 | 505.66 | 372.75 | 105.05 | 82.01 | 87.42 | 6.95 |
Bacteria Samples | Bacteriostatic Capacity | Fresh Garlic | Garlic Aged for 5 Days | Garlic Aged for 10 Days | Garlic Aged for 15 Days | Garlic Aged for 20 Days | Garlic Aged for 25 Days | Garlic Aged for 30 Days | Garlic Aged for 35 Days | Garlic Aged for 40 Days | Penicillin 10 µg/mL | Tetracycline 30 µg/mL |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B. subtilis | Inhibition zone diameter (mm) | 13.33 f,* ± 1.06 | 14.67 e,f ± 0.18 | 15.33 e,f ± 0.33 | 15.67 d,e ± 0.44 | 17.67 d ± 0.67 | 20.67 c ± 0.38 | 22.33 b,c ± 0.45 | 23.00 b ± 0.67 | 15.68 d,e ± 0.32 | 15.67 d,e ± 1.12 | 49.33 a ± 1.36 |
MIC/MBC | 0.4/0.8 | 0.4/0.8 | 0.4/0.8 | 0.4/0.8 | 0.4/0.8 | 0.2/0.4 | 0.2/0.4 | 0.2/0.4 | 0.4/0.8 | |||
E. coli | Inhibition zone diameter (mm) | - c | - c | - c | 8.67 b ± 0.33 | 8.67 b ± 0.67 | 8.67 b ± 0.18 | 9.33 b ± 0.48 | 9.67 b ± 0.33 | 8.67 b ± 0.18 | 8.33 b ± 0.67 | 41.33 a ± 0.67 |
MIC/MBC | - | - | - | 1.0/2.0 | 1.0/2.0 | 1.0/2.0 | 1.0/2.0 | 1.0/2.0 | 1.0/2.0 | |||
P. aeruginosa | Inhibition zone diameter (mm) | 8.33 f ± 0.33 | 10.33 e ± 0.67 | 10.67 d,e ± 0.48 | 11.33 b,c,d ± 0.52 | 11.00 d,e ± 0.58 | 11.67 b,c,d ± 0.42 | 12.33 b,c ± 0.36 | 12.67 b ± 0.33 | 11.02 d,e ± 0.26 | 7.67 f ± 0.33 | 31.33 a ± 1.36 |
MIC/MBC | 1.0/2.0 | 0.8/1.0 | 0.8/1.0 | 0.8/1.0 | 0.8/1.0 | 0.4/0.8 | 0.4/0.8 | 0.4/0.8 | 0.8/1.0 | |||
S. aureus | Inhibition zone diameter (mm) | 11.33 f ± 0.67 | 13.33 f ± 1.00 | 13.67 f ± 0.67 | 16.67 e ± 0.34 | 18.67 d,e ± 0.56 | 20.67 c,d ± 0.68 | 22.67 b,c ± 0.54 | 23.33 b ± 0.67 | 15.42 e,f ± 0.28 | 60.67 a ± 1.12 | 69.33 a ± 2.04 |
MIC/MBC | 0.8/1.0 | 0.4/0.8 | 0.4/0.8 | 0.2/0.4 | 0.2/0.4 | 0.2/0.4 | 0.2/0.4 | 0.2/0.4 | 0.2/0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.-C.; Jang, H.-D. Optimization of Aging Time for Improved Antioxidant Activity and Bacteriostatic Capacity of Fresh and Black Garlic. Appl. Sci. 2021, 11, 2377. https://doi.org/10.3390/app11052377
Chang T-C, Jang H-D. Optimization of Aging Time for Improved Antioxidant Activity and Bacteriostatic Capacity of Fresh and Black Garlic. Applied Sciences. 2021; 11(5):2377. https://doi.org/10.3390/app11052377
Chicago/Turabian StyleChang, Tsan-Chang, and Hung-Der Jang. 2021. "Optimization of Aging Time for Improved Antioxidant Activity and Bacteriostatic Capacity of Fresh and Black Garlic" Applied Sciences 11, no. 5: 2377. https://doi.org/10.3390/app11052377
APA StyleChang, T.-C., & Jang, H.-D. (2021). Optimization of Aging Time for Improved Antioxidant Activity and Bacteriostatic Capacity of Fresh and Black Garlic. Applied Sciences, 11(5), 2377. https://doi.org/10.3390/app11052377