Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Methods
2.2.1. Creep Properties of Cross-Arms
2.2.2. Constitutive Creep Models
3. Results and Discussion
3.1. Strain-Time Curve
3.2. Findley Power Law Model
3.3. Burger Model
3.4. Creep Models Accuracy and Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaafar, C.N.A.; Rizal, M.A.M.; Zainol, I. Effect of kenaf alkalization treatment on morphological and mechanical properties of epoxy/silica/kenaf composite. Int. J. Eng. Technol. 2018, 7, 258–263. [Google Scholar] [CrossRef]
- Jaafar, C.N.A.; Zainol, I.; Rizal, M.A.M. Preparation and characterisation of epoxy / silica / kenaf composite using hand lay-up method. In Proceedings of the 27th Scientific Conference of the Microscopy Society Malaysia (27th SCMSM 2018), Melaka, Malaysia, 3–4 December 2018; Universiti Putra Malaysia: Serdang, Malaysia; pp. 2–6. [Google Scholar]
- Shahroze, R.M.; Chandrasekar, M.; Senthilkumar, K.; Senthilmuthukumar, T.; Ishak, M.R.; Asyraf, M.R.M. A review on the various fibre treatment techniques used for the fibre surface modification of the sugar palm fibres. In Proceedings of the Seminar Enau Kebangsaan, Bahau, Negeri Sembilan, Malaysia, 1 April 2019; Universiti Putra Malaysia: Serdang, Malaysia; pp. 48–52. [Google Scholar]
- Asyraf, M.R.M.; Rafidah, M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Razman, M.R. Integration of TRIZ, Morphological Chart and ANP method for development of FRP composite portable fire extinguisher. Polym. Compos. 2020, 41, 2917–2932. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020, 9, 6759–6776. [Google Scholar] [CrossRef]
- Rawi, I.M.; Rahman, M.S.A.; Ab Kadir, M.Z.A.; Izadi, M. Wood and fiberglass crossarm performance against lightning strikes on transmission towers. In Proceedings of the International Conference on Power Systems Transient (IPST), Seoul, Korea, 26–29 June 2017; Sung-Kyun-Kwan University: Seoul, Korea; pp. 1–6. [Google Scholar]
- Sapuan, S.M. Tropical Natural Fibre Composites: Properties, Manufacture and Applications; Springer Science+Business Media Singapore: Singapore, 2014; ISBN 9780857095244. [Google Scholar]
- Ma, X.; Jiang, Z.; Tong, L.; Wmang, G.; Cheng, H. Development of creep models for glued laminated bamboo using the time-temperature superposition principle. Wood Fiber Sci. 2015, 47, 1–6. [Google Scholar]
- Liu, T. Creep of wood under a large span of loads in constant and varying environments. Part 1: Experimental observations and analysis. Holz Roh. Werkst. 1993, 51, 400–405. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Asyraf, M.R.M.; Atikah, M.S.N.; Ibrahim, R.; Dele-Afolabia, T.T. Introduction to biofiller reinforced degradable polymer composites. In Biofiller Reinforced Biodegradable Polymer Composites; Sapuan, S.M., Jumaidin, R., Hanafi, I., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–23. [Google Scholar]
- Ilyas, R.A.; Sapuan, S.M.; Atiqah, A.; Ibrahim, R.; Abral, H.; Ishak, M.R.; Zainudin, E.S.; Nurazzi, N.M.; Atikah, M.S.N.; Ansari, M.N.M.; et al. Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym. Compos. 2020, 41, 459–467. [Google Scholar] [CrossRef]
- Ilyas, R.; Sapuan, S.; Atikah, M.; Asyraf, M.; Rafiqah, S.A.; Aisyah, H.; Nurazzi, N.M.; Norrrahim, M. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text. Res. J. 2020, 004051752093239. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, M.S.; Norizan, M.N.; Norrrahim, M.N.F.; Ibrahim, R.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi, A.M.; Izwan, S.; Azammi, A.M.N.; et al. Macro to nanoscale natural fiber composites for automotive components: Research, development, and application. In Biocomposite and Synthetic Composites for Automotive Applications; Sapuan, M.S., Ilyas, R.A., Eds.; Woodhead Publishing Series: Amsterdam, The Netherland, 2020. [Google Scholar]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Shahroze, R.M.; Johari, A.N.; Rafidah, M.; Ilyas, R.A. Creep test rig for cantilever beam: Fundamentals, prospects and present views. J. Mech. Eng. Sci. 2020, 14, 6869–6887. [Google Scholar] [CrossRef]
- Johari, A.N.; Ishak, M.R.; Leman, Z.; Yusoff, M.Z.M.; Asyraf, M.R.M. Influence of CaCO3 in pultruded glass fibre/unsaturated polyester composite on flexural creep behaviour using conventional and TTSP methods. Polimery 2020, 65, 46–54. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Razman, M.R.; Chandrasekar, M. Fundamentals of creep, testing methods and development of test rig for the full-scale crossarm: A review. J. Teknol. 2019, 81, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach. J. Mater. Res. Technol. 2020, 9, 2357–2368. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique. J. Mater. Res. Technol. 2019, 8, 5647–5658. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Evaluation of design and simulation of creep test rig for full-scale cross arm structure. Adv. Civ. Eng. 2020, 6980918. [Google Scholar] [CrossRef]
- Gamalath, S.S. Long Term Creep Modelling of Wood Using Time Temperature Superposition Principle. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1991. [Google Scholar]
- Moutee, M.; Fafard, M.; Fortin, Y.; Laghdir, A. Modeling the creep behavior of wood cantilever loaded at free end during drying. Wood Fiber Sci. 2005, 37, 521–534. [Google Scholar]
- Kaboorani, A.; Blanchet, P.; Laghdir, A. A rapid method to assess viscoelastic and mechanosorptive creep in wood. Wood Fiber Sci. 2013, 45, 1–13. [Google Scholar]
- Segovia, F.; Blanchet, P.; Laghdir, A.; Cloutier, A. Mechanical behaviour of sugar maple in cantilever bending under constant and variable relative humidity conditions. Int. Wood Prod. J. 2013, 4, 225–231. [Google Scholar] [CrossRef]
- Rawi, I.M.; Ab Kadir, M.Z.A. Investigation on the 132kV overhead lines lightning-related flashovers in Malaysia. In Proceedings of the International Symposium on Lightning Protection (XIII SIPDA), Balneario Camboriu, Brazil, 28 September–2 October 2015; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2015; pp. 239–243. [Google Scholar]
- Engineering Department of TNB Transmission Division. Investigation Report on Wooden Crossarm Failure at 132kV KKSRPPAN L2; Engineering Department of TNB Transmission Division: Selangor, Malaysia, 2013. [Google Scholar]
- Xu, Y.; Lee, S.Y.; Wu, Q. Creep analysis of bamboo high-density polyethylene composites: Effect of interfacial treatment and fiber loading level. Polym. Compos. 2011, 32, 692–699. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Potential application of green composites for cross arm component in transmission tower: A brief review. Int. J. Polym. Sci. 2020, 8878300. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Johari, A.N.; Ashraf, W.; Sharaf, H.K.; Chandrasekar, M.; Mazlan, R. Creep test rig for full-scale composite crossarm: Simulation modelling and analysis. In Proceedings of the Seminar Enau Kebangsaan, Bahau, Negeri Sembilan, Malaysia, 1 April 2019; Universiti Putra Malaysia: Serdang, Malaysia, 2019; pp. 34–38. [Google Scholar]
- Sharaf, H.K.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Conceptual design of the cross-arm for the application in the transmission towers by using TRIZ–morphological chart–ANP methods. J. Mater. Res. Technol. 2020, 9, 9182–9188. [Google Scholar] [CrossRef]
- Johari, A.N.; Ishak, M.R.; Leman, Z.; Yusoff, M.Z.M.; Asyraf, M.R.M. Creep Behaviour Monitoring of Short-term Duration for Fiber-glass Reinforced Composite Cross-arms with Unsaturated Polyester Resin Samples Using Conventional Analysis. J. Mech. Eng. Sci. 2020, 14, 7361–7368. [Google Scholar] [CrossRef]
- Beddu, S.; Syamsir, A.; Arifin, Z.; Ishak, M. Creep behavior of glass fibre reinforced polymer structures in crossarms transmission line towers. AIP Conf. Proc. 2018, 2031, 20039. [Google Scholar] [CrossRef]
- Bakar, M.S.A.; Mohamad, D.; Ishak, Z.A.M.; Yusof, Z.M.; Salwi, N. Durability control of moisture degradation in GFRP cross arm transmission line towers. AIP Conf. Proc. 2018, 2031, 20027. [Google Scholar] [CrossRef]
- Hassan, N.H.N.; Bakar, A.H.A.; Mokhlis, H.; Illias, H.A. Analysis of arrester energy for 132kV overhead transmission line due to back flashover and shielding failure. In Proceedings of the PECon 2012 IEEE International Conference on Power and Energy, Kota Kinabalu, Malaysia, 2–5 December 2012; pp. 683–688. [Google Scholar]
- Hunt, J.F.; Zhang, H.; Huang, Y. Analysis of cantilever-beam bending stress relaxation properties of thin wood composites. BioResources 2015, 10, 3131–3145. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.H.; Zhao, Y.K. The summary of wood stress relaxation properties and its influencing factors. Wood Proc. Mach. 2010, 25, 39–40. [Google Scholar]
- Liu, H.W. Mechanics of Materials; China Machine Press: Beijing, China, 2004. [Google Scholar]
- Loni, S.; Stefanou, I.; Valvo, P.S. Experimental study on the creep behaviour of GFRP pultruded beams. In Proceedings of the AIMETA 2013–XXI Congresso Nazionale dell’Associazione Italiana di Meccanica Teorica e Applicata, Torino, Italy, 17–20 September 2013; Politecnico di Torino: Torino, Italy, 2013; pp. 1–10. [Google Scholar]
- Pérez, C.J.; Alvarez, V.A.; Vázquez, A. Creep behaviour of layered silicate/starch-polycaprolactone blends nanocomposites. Mater. Sci. Eng. A 2008, 480, 259–265. [Google Scholar] [CrossRef]
- Chandra, P.K.; Sobral, P.J.d.A. Calculation of viscoelastic properties of edible films: Application of three models. Ciência e Tecnol. Aliment. 2006, 20, 250–256. [Google Scholar] [CrossRef]
- Kanyilmaz, A. Role of compression diagonals in concentrically braced frames in moderate seismicity: A full scale experimental study. J. Constr. Steel Res. 2017, 133, 1–18. [Google Scholar] [CrossRef]
- Patil, D.M.; Sangle, K.K. Seismic behaviour of different bracing systems in high rise 2-D steel buildings. Structures 2015, 3, 282–305. [Google Scholar] [CrossRef]
- Ozyhar, T.; Hering, S.; Niemz, P. Viscoelastic characterization of wood: Time dependence of the orthotropic compliance in tension and compression. J. Rheol. 2013, 57, 699–717. [Google Scholar] [CrossRef]
- Jiang, J.; Erik Valentine, B.; Lu, J.; Niemz, P. Time dependence of the orthotropic compression Young’s moduli and Poisson’s ratios of Chinese fir wood. Holzforschung 2016, 70, 1093–1101. [Google Scholar] [CrossRef]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes, 1st ed.; John Wiley & Sons: Chichester, UK, 2006; ISBN 9780470021729. [Google Scholar]
- Machado, J.S.; Louzada, J.L.; Santos, A.J.A.; Nunes, L.; Anjos, O.; Rodrigues, J.; Simões, R.M.S.; Pereira, H. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Mater. Des. 2014, 56, 975–980. [Google Scholar] [CrossRef]
- Van Duong, D.; Matsumura, J. Within-stem variations in mechanical properties of Melia azedarach planted in northern Vietnam. J. Wood Sci. 2018, 64, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Rahman, M.Z.A.; Anwar, U.M.K. Characterization of sugar palm (Arenga pinnata) fibres Tensile and thermal properties. J. Therm. Anal. Calorim. 2012, 109, 981–989. [Google Scholar] [CrossRef]
- Ranade, A.; Nayak, K.; Fairbrother, D.; D’Souza, N.A. Maleated and non-maleated polyethylene-montmorillonite layered silicate blown films: Creep, dispersion and crystallinity. Polymer 2005, 46, 7323–7333. [Google Scholar] [CrossRef]
- Harries, K.A. Enhancing the stability of structural steel components using fibre-reinforced polymer (FRP) composites. In Rehabilitation of Metallic Civil Infrastructure Using Fiber Reinforced Polymer (FRP) Composites: Types Properties and Testing Methods; Karbhari, V.M., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 117–139. ISBN 9780857096531. [Google Scholar]
- Younes, M.F.; Abdel Rahman, M.A. Tensile relaxation behaviour for multi layes fiberglass fabric/epoxy composite. Eur. J. Mater. Sci. 2016, 3, 1–13. [Google Scholar]
- Yang, J.L.; Zhang, Z.; Schlarb, A.K.; Friedrich, K. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance. Polymer 2006, 47, 6745–6758. [Google Scholar] [CrossRef]
- Siengchin, S. Dynamic mechanic and creep behaviors of polyoxymethylene/boehmite alumina nanocomposites produced by water-mediated compounding: Effect of particle size. J. Thermoplast. Compos. Mater. 2013, 26, 863–877. [Google Scholar] [CrossRef]
- Siengchin, S.; Karger-Kocsis, J. Structure and creep response of toughened and nanoreinforced polyamides produced via the latex route: Effect of nanofiller type. Compos. Sci. Technol. 2009, 69, 677–683. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Zhai, Z.J.; Chen, Q.Y. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—comparison with experimental data from literature. HVAC R Res. 2007, 13, 871–886. [Google Scholar] [CrossRef]
Properties | Specification |
---|---|
Material | Mild steel |
Tensile strength, MPa | 766 |
Yield strength, MPa | 572 |
Pipe shape | Square hollow section |
Pipe size (width/height/thickness), mm | 100/100/1.9 |
Total size (width/length/height), mm | 1525/430/4100 |
Main Member Arm | Location | A | n | Adj. R2 | |||
---|---|---|---|---|---|---|---|
Current Cross-Arm | Braced Cross-Arm | Current Cross-Arm | Braced Cross-Arm | Current Cross-Arm | Braced Cross-Arm | ||
Right | 1 | 5.818 × 10−7 | 6.086 × 10−6 | 0.669 | 0.395 | 0.973 | 0.989 |
2 | 6.977 × 10−7 | 1.005 × 10−5 | 0.726 | 0.402 | 0.957 | 0.981 | |
3 | 1.128 × 10−6 | 1.255 × 10−5 | 0.673 | 0.396 | 0.936 | 0.977 | |
4 | 1.927 × 10−7 | 1.350 × 10−5 | 0.895 | 0.372 | 0.888 | 0.951 | |
5 | 4.224 × 10−8 | 1.429 × 10−5 | 1.045 | 0.278 | 0.833 | 0.938 | |
Left | 1 | 1.647 × 10−6 | 6.331 × 10−6 | 0.551 | 0.389 | 0.981 | 0.991 |
2 | 5.076 × 10−6 | 2.969 × 10−5 | 0.486 | 0.234 | 0.958 | 0.992 | |
3 | 6.377 × 10−6 | 1.952 × 10−5 | 0.496 | 0.331 | 0.933 | 0.960 | |
4 | 5.313 × 10−6 | 6.858 × 10−5 | 0.528 | 0.123 | 0.920 | 0.958 | |
5 | 4.278 × 10−6 | 2.682 × 10−5 | 0.533 | 0.155 | 0.917 | 0.928 |
Cross-Arm Configuration | Current | Braced | ||
---|---|---|---|---|
Right | Left | Right | Left | |
Stress independent material exponent, n | 0.8016 | 0.5188 | 0.3686 | 0.2464 |
Main Member Arm | Location | Ee | ηk | Adj R2 | |||
---|---|---|---|---|---|---|---|
Current Cross-Arm | Braced Cross-Arm | Current Cross-Arm | Braced Cross-Arm | Current Cross-Arm | Braced Cross-Arm | ||
Right | 1 | 4.62 × 1010 | 4.53 × 1010 | 4.11 × 1014 | 3.72 × 1014 | 0.970 | 0.991 |
2 | 5.52 × 1010 | 6.22 × 1010 | 4.53 × 1014 | 4.07 × 1014 | 0.961 | 0.987 | |
3 | 6.54 × 1010 | 8.20 × 1010 | 6.15 × 1014 | 5.37 × 1014 | 0.938 | 0.983 | |
4 | 9.91 × 1010 | 12.2 × 1010 | 9.84 × 1014 | 7.60 × 1014 | 0.888 | 0.973 | |
5 | 18.5 × 1010 | 24.4 × 1010 | 19.2 × 1014 | 20.9 × 1014 | 0.824 | 0.969 | |
Left | 1 | 5.11 × 1010 | 5.59 × 1010 | 3.41 × 1014 | 2.38 × 1014 | 0.973 | 0.851 |
2 | 5.33 × 1010 | 6.35 × 1010 | 3.67 × 1014 | 3.43 × 1014 | 0.941 | 0.695 | |
3 | 6.70 × 1010 | 8.74 × 1010 | 3.86 × 1014 | 3.50 × 1014 | 0.922 | 0.802 | |
4 | 8.53 × 1010 | 13.4 × 1010 | 5.51 × 1014 | 8.74 × 1014 | 0.901 | 0.559 | |
5 | 14.5 × 1010 | 24.9 × 1010 | 7.26 × 1014 | 19.9 × 1014 | 0.910 | 0.518 |
Configuration | Model | Inst. Strain | Located at y3 at Main Member | |||
---|---|---|---|---|---|---|
Right | Percentage Error (%) | Left | Percentage Error (%) | |||
Current cross-arm | Experimental data | ε (10−3) | 1.006 | - | 0.988 | - |
Findley model | εo (10−3) | 1.010 | 0.398 | 0.994 | 0.604 | |
Burger model | εo (10−3) | 1.010 | 0.398 | 0.986 | 0.202 | |
Braced cross-arm | Experimental data | ε (10−3) | 0.806 | - | 0.731 | - |
Findley model | εo (10−3) | 0.798 | 0.993 | 0.722 | 1.231 | |
Burger model | εo (10−3) | 0.806 | 0.000 | 0.756 | 3.420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Appl. Sci. 2021, 11, 2061. https://doi.org/10.3390/app11052061
Asyraf MRM, Ishak MR, Sapuan SM, Yidris N. Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Applied Sciences. 2021; 11(5):2061. https://doi.org/10.3390/app11052061
Chicago/Turabian StyleAsyraf, Muhammad Rizal Muhammad, Mohamad Ridzwan Ishak, Salit Mohd Sapuan, and Noorfaizal Yidris. 2021. "Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties" Applied Sciences 11, no. 5: 2061. https://doi.org/10.3390/app11052061
APA StyleAsyraf, M. R. M., Ishak, M. R., Sapuan, S. M., & Yidris, N. (2021). Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Applied Sciences, 11(5), 2061. https://doi.org/10.3390/app11052061