# The Effect of Concentrated Microwave Field (CMF) on Selected Physical and Rheological Properties of Liquid Egg Products

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

_{o}and κ″ = ε″/ε

_{o}where ε

_{o}is the permittivity of the vacuum (ε

_{o}= 8.854 × 10

^{−12}F m

^{−1}). The dielectric properties of raw materials subjected to the influence of the microwave field also depend on the temperature of the process and the frequency of the microwave waves used [3].

## 2. Material and Method

#### 2.1. Preparing the Egg Raw Material

#### 2.2. Device for Microwave Treatment

^{3}test sample was placed in a glass vessel (Figure 1).

#### 2.3. Microwave Process Parameters

#### 2.4. Measurements of the Temperature, pH and Color

^{3}) was placed in a Petri dish of 45 mm in diameter. The measurement procedure was performed according to Chen et al. [23] and Necidova et al. [24]. The color space parameters L—lightness, a—redness, and b—yellowness were measured 3 times for each sample using the reflectance method. The instrument was calibrated to white point, and a setting with a D65 light source was used. The light projection tube of Minolta CR-400 was lightly touching the liquid surface of the samples during color measurement.

#### 2.5. Analysis of Apparent Viscosity

^{3}was placed in a measuring system consisting of a plate-cone set (C60/10° TiL). The shear rate ranged from 0 to 1000 s

^{−1}, and the apparent viscosity value for the shear rate 1000 s

^{-1}expressed in millipascal-seconds (mPa·s) was used for the analysis. The apparent viscosity was determined in triplicate.

#### 2.6. Statistical Analysis

## 3. Results

#### 3.1. Egg White (Albumen)

^{°}in relation to the OX axis. In the case of the variability range above approximately 1 s (in relation to the intervals between pulses) and below approximately 3.5 kJ (in terms of the total amount of energy supplied to the system) we have the opposite situation. In this area of variability, the increase in temperature of hen egg white was mainly influenced by one variation factor, i.e., the amount of energy supplied to the system, which is visible in the system of isothermal lines running at an angle much smaller than 45

^{°}with respect to the OX axis. The absolute temperature increase of egg white in this area was much smaller (to approximately 31 °C) than in the first discussed range, where this value was over 48 °C.

^{−1}) according to the “response surface” model (Figure 2d) had the highest values (approximately 5 mPa·s) in the case of using longer intervals between CMF pulses while using rather higher doses of energy supplied to the system. The intervals between the CMF pulses (both in the linear and quadratic aspect) had a greater impact on the shape of the curves than the amount of energy supplied to the system (albeit only in the linear aspect, as the quadratic aspect did not have a significant impact on the model), which is shown in Table 2. Less sticky egg white (up to the value not higher than about 4.5 mPa·s) was obtained during the CMF treatment with a lower value of energy supplied to the system and shorter intervals between pulses.

#### 3.2. Yolk

^{−1}) was statistically significantly dependent to a similar extent on the intervals between the CMF pulses and the total amount of energy used—in both cases in a linear aspect (Figure 3d). On the basis of the plot of the “response surface”, it was found that the yolk was characterized by the lowest viscosity at the level of about 100 mPa·s, which was subjected to low-energy CMF effects and longer intervals between pulses (Table 4). The highest yolk viscosity (close to 130 mPa·s) was found in the samples subjected to the high-energy CMF impact with short intervals between pulses. When using CMF pulse intervals shorter than 1 s, the amount of energy supplied to the system had a major influence on the increase in viscosity. Above 1 s intervals between the CMF pulses, the influence of the amount of energy on the yolk viscosity clearly decreases, and the effect of the interval time increases (Figure 3d).

#### 3.3. Liquid Whole Eggs

#### 3.4. Correlations

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Vadivambal, R.; Jayas, D.S. Non-uniform temperature distribution during microwave heating of food materials—A review. Food Bioprocess Technol.
**2010**, 3, 161–171. [Google Scholar] [CrossRef] - Dolińska, R.; Warchlewski, J.R. Przyszłościowe technologie żywności z udziałem mikrofal i ich wpływ na składniki żywności. Przemysł Spożywczy
**2003**, 11, 2–6. [Google Scholar] - Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing–A review. Food Res. Int.
**2013**, 52, 243–261. [Google Scholar] [CrossRef] - Li, Z.Y.; Wang, R.F.; Kudra, T. Uniformity issue in microwave drying. Dry. Technol.
**2011**, 29, 652–660. [Google Scholar] [CrossRef] - Salazar-Gonzalez, C.; Martin-Gonzalez, M.F.S.; Lopez-Malo, A.; Sosa-Morales, M.E. Recent Studies Related to Microwave Processing of Fluid Foods. Food Bioprocess Technol.
**2012**, 5, 31–46. [Google Scholar] [CrossRef] - Dev, S.R.S.; Raghavan, G.S.V.; Gariepy, Y. Dielectric properties of egg components and microwave heating for in-shell pasteurization of eggs. J. Food Eng.
**2008**, 86, 207–214. [Google Scholar] [CrossRef] - Shenga, E.; Singh, R.P.; Yadav, A.S. Effect of pasteurization of shell egg on its quality characteristics under ambient storage. J. Food Sci. Technol. Mysore
**2010**, 47, 420–425. [Google Scholar] [CrossRef][Green Version] - Pereira, R.N.; Vincente, A.A. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res. Int.
**2010**, 43, 1936–1943. [Google Scholar] [CrossRef][Green Version] - Oziembłowski, M.; Dróżdż, M.; Kiełbasa, P.; Dróżdż, T.; Gliniak, M.; Nawara, P.; Ostafin, M. Impact of pulsed electric field on the quality of unpasteurized beer. Prog. Appl. Electr. Eng.
**2017**, 1–4. [Google Scholar] [CrossRef] - Ostafin, M.; Miernik, A.; Dróżdż, T.; Nawara, P.; Gliniak, M.; Kiełbasa, P.; Tabor, S. The effect of alternating magnetic field on biofilm formation by Saccharomyces cerevisiae yeast. Prog. Appl. Electr. Eng.
**2017**, 1–5. [Google Scholar] [CrossRef] - Dziadek, K.; Kopeć, A.; Dróżdż, T.; Kiełbasa, P.; Ostafin, M.; Buski, K.; Oziembłowski, M. Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. J. Food Sci. Technol.
**2019**, 56, 1184–1191. [Google Scholar] [CrossRef][Green Version] - Dróżdż, T.; Bieńkowski, P.; Kiełbasa, P.; Nawara, P.; Popardowski, E. The research stand to stimulation of biological materials by the various electromagnetic field. Przegląd Elektrotechniczny
**2019**, 95, 66–69. [Google Scholar] - Guillard, V.; Mauricio-Iglesias, M.; Gontard, N. Effect of novel food processing methods on packaging: Structure, composition, and migration properties. Crit. Rev. Food Sci. Nutr.
**2010**, 50, 969–988. [Google Scholar] [CrossRef] [PubMed] - Oziembłowski, M.; Korzycki, M. Liquid food preserved by unconventional methods. Pol. J. Food Nutr. Sci.
**2007**, 57, 423–427. [Google Scholar] - Oziembłowski, M.; Dróżdż, T.; Bobak, Ł.; Nęcka, K.; Lis, S.; Nawara, P.; Wrona, P. Skoncentrowane pole mikrofalowe (CMF) jako niekonwencjonalna metoda utrwalania płynnych produktów spożywczych w ramach “teorii płotkowej”. Przegląd Elektrotechniczny
**2016**, 92, 113–116. [Google Scholar] - Oziembłowski, M. Wpływ Pulsacyjnych pól Elektrycznych (PEF) Oraz Skoncentrowanego Pola Mikrofalowego (CMF) na Wybrane Cechy Płynnych Produktów Jajczarskich; Wydawnictwo Uniwersytetu Przyrodnicznego we Wrocławiu: Wrocław, Poland, 2019. [Google Scholar]
- Karisma, A.D.; Hamaba, T.; Fukasawa, T.; Huang, A.N.; Segawa, T.; Fukui, K. Validation of measured microwave absorption and temperature change for development of a single-mode-type microwave heating thermogravimetry apparatus. Rev. Sci. Instrum.
**2017**, 88, 024101. [Google Scholar] [CrossRef] [PubMed] - Ignatenko, M.; Motohiko, T. Numerical analysis of the microwave heating of compacted copper powders in single-mode cavity. Jpn. J. Appl. Phys.
**2011**, 50, 097302. [Google Scholar] [CrossRef] - Savary, E.; Thuault, A.; Hornez, J.C.; Descamps, M.; Marinel, S.; Leriche, A. Frittage micro-ondes en cavit´e monomode de bioc´eramiques (Microwaves sintering of bioceramics in a single mode cavity). MATEC Web Conf.
**2013**, 7, 04017. [Google Scholar] [CrossRef][Green Version] - Molinari, F.; Maignan, A.; Marinel, S.; Savary, E. Fast synthesis of SrFe12O19 hexaferrite in a single-mode microwave cavity. Ceram. Int.
**2017**, 43, 4229–4234. [Google Scholar] [CrossRef] - Ozkoc, S.; Sumnu, G.; Sahin, S. Recent developments in microwave heating, chapter 20. In Emerging Technologies for Food Processing; Sun, D., Ed.; Academic Press: London, UK, 2014; pp. 361–383. [Google Scholar]
- Tlili, M.; Deshours, F.; Alquié, G.; Kokabi, H.; Hardinata, S.; Koskas, F. Microwave resonant sensor for non-invasive characterization of biological tissues. IRBM
**2018**, 39, 445–450. [Google Scholar] [CrossRef] - Chen, Z.; Zhu, C.; Zhang, Y.; Niu, D.; Du, J. Effects of aqueous chlorine dioxide treatment on enzymatic browning and shelflife of fresh-cut asparagus lettuce (Lactuca sativa L.). Postharvest Biol. Technol.
**2010**, 58, 232–238. [Google Scholar] [CrossRef] - Necidová, L.; Bursová, S.; Ježek, F.; Haruštiaková, D.; Vorlová, L.; Golian, J. Effect of preservatives on the shelf-life and sensory characteristics of pasteurized liquid whole egg stored at 4 °C. Poult. Sci.
**2019**, 98, 5940–5948. [Google Scholar] [CrossRef] [PubMed] - Ahmed, J.; Ramaswamy, H.S. Microwave pasteurization and sterilization of foods. In Handbook of Food Preservation, 2nd ed.; Rahman, M.S., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 691–711. [Google Scholar]
- Coimbra, J.S.R.; Gabas, A.L.; Minim, L.A.; Rojas, E.E.G.; Telis, V.R.N.; Telis-Romero, J. Density, heat capacity and thermal conductivity of liquid egg products. J. Food Eng.
**2006**, 74, 186–190. [Google Scholar] [CrossRef] - Somolinos, M.; García, D.; Manas, P.; Condon, S.; Pagan, R. Organic acids make Escherichia coli more resistant to pulsed electric fields at acid pH. Int. J. Food Microbiol.
**2010**, 136, 381–384. [Google Scholar] [CrossRef] - Sagarzazu, N.; Cebrian, G.; Pagan, R.; Condon, S.; Manas, P. Resistance of Campylobacter jejuni to heat and to pulsed electric fields. Innov. Food Sci. Emerg. Technol.
**2010**, 11, 283–289. [Google Scholar] [CrossRef] - Otosu, T.; Kobayashi, K.; Yamaguchi, S. Local pH at the surface of hen egg white lysozyme. Chem. Phys. Lett.
**2018**, 693, 165–169. [Google Scholar] [CrossRef] - Monira, K.; Salahuddin, M.; Miah, G. Effect of breed and holding period on egg quality characteristics of chicken. Int. J. Poult. Sci.
**2003**, 4, 261–263. [Google Scholar] - Wang, Y.; Wang, Z.; Shan, Y. Assessment of the relationship between ovomucin and albumen quality of shell eggs during storage. Poult. Sci.
**2019**, 98, 473–479. [Google Scholar] [CrossRef] - Drabik, K.; Batkowska, J.; Próchniak, T.; Horecka, B. Citric acid as a factor limiting changes in the quality of table eggs during their storage. Poult. Sci.
**2021**. [Google Scholar] [CrossRef] - Bi, X.; Wang, X.; Chen, Y.; Chen, L.; Xing, Y.; Che, Z. Effects of combination treatments of lysozyme and high power ultrasound on the Salmonella typhimurium inactivation and quality of liquid whole egg. Ultrason. Sonochemistry
**2020**, 60, 104763. [Google Scholar] [CrossRef] [PubMed] - De Souza, P.M.; Fernández, A. Consumer acceptance of UV-C treated liquid egg products and preparations with UV-C treated eggs. Innov. Food Sci. Emerg. Technol.
**2012**, 14, 107–114. [Google Scholar] [CrossRef] - Seemann, M. Factors which influence pigmentation. Lohmann Inf.
**2000**, 24, 20–24. [Google Scholar] - Severa, L.; Nedomová, Š.; Buchar, J. Influence of storing time and temperature on the viscosity of an egg yolk. J. Food Eng.
**2010**, 96, 266–269. [Google Scholar] [CrossRef] - Atılgan, M.; Unluturk, S. Rheological properties of liquid egg products (LEPs). Int. J. Food Prop.
**2008**, 11, 296–309. [Google Scholar] [CrossRef][Green Version] - Tang, Q.; Munro, P.A.; Mccarthy, O.J. Rheology of whey protein concentrate solutions as a function of concentration, temperature, pH and salt concentration. J. Dairy Res.
**1993**, 60, 349–361. [Google Scholar] [CrossRef] - Sheng, L.; Zu, L.; Ma, M. Study of high pressure carbon dioxide on the physicochemical, interfacial and rheological properties of liquid whole egg. Food Chem.
**2021**, 337, 127989. [Google Scholar] [CrossRef] - Kozempel, M.F.; Cook, R.D.; Scullen, O.J.; Annous, B.A. Development of a process for detecting nonthermal effects of microwave energy on microorganisms at low temperature. J. Food Process. Preserv.
**2000**, 24, 287–301. [Google Scholar] [CrossRef]

**Figure 2.**Temperature increment (

**a**), active acidity (pH) (

**b**), color parameter b* (

**c**,

**d**) apparent viscosity (at shear rate 1000 s

^{−1}) of egg albumen after CMF treatment (9 values) depending on intervals between pulses and total energy supplied to system.

**Figure 3.**Temperature increment (

**a**), active acidity (pH) (

**b**), color parameter a* (

**c**,

**d**) apparent viscosity (at shear rate 1000 s

^{−1}) of yolk after CMF treatment (9 values) depending on intervals between pulses and total energy supplied to system.

**Figure 4.**Temperature increment (

**a**), active acidity (pH) (

**b**), color parameter L* (

**c**) and color parameter b* (

**d**) of liquid whole eggs after CMF treatment (9 values) depending on intervals between pulses and total energy supplied to system.

**Table 1.**Physical and rheological parameters of the egg albumen after the CMF treatment (n=2 or n=3).

Variant | ΔT ( °C) | pH | L* | a* | b* | Apparent Viscosity (mPa·s) |
---|---|---|---|---|---|---|

Control | - | 9.21^{b,c} | 54.46 ^{b,c} | −2.47 ^{b,c} | 4.77 ^{a,b} | 5.053 ^{a} |

2.40kJ (0.5s) | 30.8 ^{e} | 9.28 ^{a} | 54.28 ^{b,c} | −2.62 ^{c} | 5.22 ^{a} | 3.760 ^{d} |

3.36kJ (0.5s) | 42.8 ^{b} | 9.05 ^{e} | 54.99 ^{a,b,c} | −2.36 ^{a,b,c} | 4.76 ^{a,b} | 4.223 ^{c,d} |

4.32kJ (0.5s) | 48.4 ^{a} | 8.99 ^{f} | 57.12 ^{a,b} | −2.24 ^{a,b} | 3.91 ^{d,e} | 4.383 ^{b,c} |

2.40kJ (1.0s) | 24.0 ^{g} | 9.23 ^{b} | 56.06 ^{a,b,c} | −2.68 ^{c} | 5.21 ^{a} | 4.507 ^{a,b,c} |

3.36kJ (1.0s) | 30.9 ^{e} | 9.19 ^{c} | 55.54 ^{a,b,c} | −2.37 ^{a,b,c} | 4.22 ^{b,c,d,e} | 4.937 ^{a,b} |

4.32kJ (1.0s) | 36.8 ^{c} | 9.16 ^{d} | 54.13 ^{b,c} | −2.27 ^{a,b} | 4.13 ^{c,d,e} | 5.050 ^{a} |

2.40kJ (1.5s) | 20.2 ^{h} | 9.27 ^{a} | 55.56 ^{a,b,c} | −2.50 ^{b,c} | 4.68 ^{a,b,c} | 4.927 ^{a,b} |

3.36kJ (1.5s) | 29.0 ^{f} | 9.19 ^{c} | 57.64 ^{a} | −2.56 ^{b,c} | 4.47 ^{b,c,d} | 4.943 ^{a,b} |

4.32kJ (1.5s) | 35.2 ^{d} | 9.14 ^{d} | 53.38 ^{c} | −2.12 ^{a} | 3.68 ^{e} | 4.950 ^{a,b} |

**Table 2.**Values of linear (L) and quadratic (Q) Pareto coefficients and linear−linear interactions of the main factors (L·L) of the analyzed variables in the “response surface” model for egg white after CMF treatment.

Variables | ΔT [ °C] | pH | L* | a* | b* | Apparent Viscosity [mPa·s] |
---|---|---|---|---|---|---|

Energy (L) | 25.184 * | −7.580 * | −0.515 | 4.578 * | −6.648 * | 2.460 * |

Interval (L) | −20.857 * | 4.288 * | 0.076 | 0.092 | −2.070 * | 5.072 * |

Energy (Q) | −3.069 * | 1.637 | −1.372 | 0.070 | 0.371 | −0.871 |

Interval (Q) | 8.347 * | −2.804 * | 0.500 | 0.339 | 0.016 | −2.380 * |

Interaction (L·L) | −1.766 | 3.001 * | −2.520 * | 0.000 | 0.730 | −1.519 |

**Table 3.**Physical and rheological parameters of the egg albumen after the CMF treatment (n = 2 or n = 3).

Variant | ΔT (^{o}C) | pH | L* | a* | b* | Apparent Viscosity (mPa·s) |
---|---|---|---|---|---|---|

Control | - | 6.94 ^{a,b} | 46.21 ^{a,b} | 4.20 ^{d} | 20.62 ^{a,b} | 103.7 ^{b} |

2.40 kJ (0.5 s) | 33.1 ^{d} | 6.89 ^{e,f} | 46.59 ^{a,b} | 4.27 ^{c,d} | 19.99 ^{a,b} | 103.3 ^{b} |

3.36 kJ (0.5 s) | 40.2 ^{b} | 6.87 ^{g} | 49.39 ^{a} | 4.75 ^{b} | 23.28 ^{a} | 117.7 ^{a,b} |

4.32 kJ (0.5 s) | 56.3 ^{a} | 6.88 ^{f,g} | 45.68 ^{b} | 4.16 ^{d} | 19.05 ^{a,b} | 128.7 ^{a} |

2.40 kJ (1.0 s) | 28.6 ^{f} | 6.83 ^{h} | 46.72 ^{a,b} | 5.18 ^{a} | 20.52 ^{a,b} | 112.5 ^{a,b} |

3.36 kJ (1.0 s) | 36.0 ^{c} | 6.89 ^{e,f} | 45.10 ^{b} | 4.75 ^{b} | 19.98 ^{a,b} | 113.8 ^{a,b} |

4.32 kJ (1.0 s) | 40.0 ^{b} | 6.91 ^{d,e} | 46.33 ^{a,b} | 4.75 ^{b} | 21.53 ^{a,b} | 118.0 ^{a,b} |

2.40 kJ (1.5 s) | 23.2 ^{g} | 6.93 ^{b,c} | 43.90 ^{b} | 4.92 ^{a,b} | 18.45 ^{b} | 99.4 ^{b} |

3.36 kJ (1.5 s) | 30.1 ^{e} | 6.92 ^{c,d} | 45.10 ^{b} | 4.62 ^{b,c} | 19.55 ^{a,b} | 104.3 ^{b} |

4.32 kJ (1.5 s) | 32.8 ^{d} | 6.95 ^{a} | 44.15 ^{b} | 4.63 ^{b,c} | 18.01 ^{b} | 107.0 ^{b} |

**Table 4.**Values of linear (L) and quadratic (Q) Pareto coefficients and linear−linear interactions of the main factors (L·L) of the analyzed variables in the “response surface” model for egg yolk after CMF treatment.

Variables | ΔT ( °C) | pH | L* | a* | b* | Apparent Viscosity (mPa·s) |
---|---|---|---|---|---|---|

Energy (L) | 12.755 * | 2.331 * | −0.359 | −2.034 | −0.104 | 2.556 * |

Interval (L) | −12.553 * | 4.144 * | −2.920 * | 2.418 * | −1.781 | 2.589 * |

Energy (Q) | −0.023 | 0.312 | −0.803 | −0.177 | −1.065 | −0.051 |

Interval (Q) | 0.895 | 2.734 * | 0.121 | −2.699 * | −0.648 | −1.103 |

Interaction (L·L) | −4.807 * | 0.952 | 0.492 | −0.510 | 0.175 | −1.445 |

**Table 5.**Physical and rheological parameters of the liquid whole eggs after the CMF treatment (n = 2 or n = 3).

Variant | ΔT [^{o}C] | pH | L* | a* | b* | Apparent Viscosity [mPa·s] |
---|---|---|---|---|---|---|

Control | - | 8.12 ^{a} | 48.08 ^{a,b} | 2.32 ^{d} | 18.23 ^{a,b} | 7.483 ^{a,b} |

2.40 kJ (0.5 s) | 28.4 ^{f} | 8.06 ^{b} | 45.14 ^{c} | 1.96 ^{e,f} | 15.78 ^{c} | 7.240 ^{b} |

3.36 kJ (0.5 s) | 37.2 ^{c} | 7.98 ^{f} | 46.94 ^{a,b,c} | 2.00 ^{e} | 17.36 ^{a,b,c} | 7.587 ^{a,b} |

4.32 kJ (0.5 s) | 43.9 ^{a} | 8.03 ^{c,d} | 47.61 ^{a,b,c} | 3.10 ^{a} | 18.21 ^{a,b} | 7.397 ^{a,b} |

2.40 kJ (1.0 s) | 24.9 ^{g} | 8.01 ^{c,d,e} | 46.96 ^{a,b,c} | 1.83 ^{f} | 17.42 ^{a,b,c} | 7.263 ^{a,b} |

3.36 kJ (1.0 s) | 31.2 ^{d} | 7.98 ^{f} | 48.10 ^{a,b} | 2.49 ^{c} | 18.36 ^{a,b} | 7.473 ^{a,b} |

4.32 kJ (1.0 s) | 41.0 ^{b} | 7.90 ^{g} | 49.20 ^{a} | 2.64 ^{b} | 19.22 ^{a} | 7.607 ^{a,b} |

2.40 kJ (1.5 s) | 21.3 ^{h} | 8.03 ^{c} | 46.47 ^{b,c} | 2.44 ^{c,d} | 16.39 ^{b,c} | 7.490 ^{a,b} |

3.36 kJ (1.5 s) | 28.8 ^{f} | 8.01 ^{d,e} | 46.40 ^{b,c} | 2.08 ^{e} | 16.72 ^{b,c} | 7.667 ^{a} |

4.32 kJ (1.5 s) | 29.4 ^{e} | 8.00 ^{e,f} | 46.81 ^{a,b,c} | 2.63 ^{b} | 17.32 ^{a,b,c} | 7.287 ^{a,b} |

**Table 6.**Values of linear (L) and quadratic (Q) Pareto coefficients and linear−linear interactions of the main factors (L·L) of the analyzed variables in the “response surface” model for liquid whole eggs after CMF treatment.

Variables | ΔT ( °C) | pH | L* | a* | b* | Apparent Viscosity (mPa·s) |
---|---|---|---|---|---|---|

Energy (L) | 14.349 * | −3.597* | 2.702 * | 7.008 * | 3.071 * | 0.943 |

Interval (L) | −10.843 * | −0.583 | −0.002 | 0.294 | −0.549 | 0.699 |

Energy (Q) | −0.696 | 0.702 | −0.208 | 2.167* | −0.183 | −2.053 |

Interval (Q) | −0.628 | 3.430 * | −3.031 * | −0.280 | −3.025 * | 0.227 |

Interaction (L·L) | −3.276 * | 0.000 | −1.400 | −3.764 * | −1.100 | −1.401 |

**Table 7.**Correlation coefficients R between the studied parameters within individual egg materials subjected to the effects of the concentrated microwave CMF field (n = 9). Significant correlation coefficients (p < 0.05) are marked in bold with an asterisk.

Delta T | pH | L* | a* | b* | Viscosity | |
---|---|---|---|---|---|---|

Egg white (albumen) | ||||||

DeltaT | 1.000 | −0.917 * | −0.016 | 0.665 | −0.504 | −0.262 |

pH | 1.000 | −0.192 | −0.670 * | 0.565 | 0.055 | |

L* | 1.000 | −0.370 | 0.098 | 0.050 | ||

a* | 1.000 | −0.909 * | 0.366 | |||

b* | 1.000 | −0.592 | ||||

Viscosity | 1.000 | |||||

Yolk | ||||||

DeltaT | 1.000 | −0.229 | 0.317 | −0.644 | 0.211 | 0.115 |

pH | 1.000 | −0.669 * | −0.219 | −0.551 | −0.598 | |

L* | 1.000 | 0.028 | 0.922 * | 0.282 | ||

a* | 1.000 | 0.213 | −0.095 | |||

b* | 1.000 | 0.137 | ||||

Viscosity | 1.000 | |||||

Liquid whole eggs | ||||||

DeltaT | 1.000 | −0.471 | 0.600 | 0.562 | 0.695 * | 0.302 |

pH | 1.000 | −0.858 * | −0.206 | −0.807 * | −0.550 | |

L* | 1.000 | 0.547 | 0.978 * | 0.420 | ||

a* | 1.000 | 0.562 | 0.076 | |||

b* | 1.000 | 0.314 | ||||

Viscosity | 1.000 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Oziembłowski, M.; Nawirska-Olszańska, A.; Maksimowski, D.; Trenka, M.; Break, A.; Kulig, D.; Miernik, A.
The Effect of Concentrated Microwave Field (CMF) on Selected Physical and Rheological Properties of Liquid Egg Products. *Appl. Sci.* **2021**, *11*, 1832.
https://doi.org/10.3390/app11041832

**AMA Style**

Oziembłowski M, Nawirska-Olszańska A, Maksimowski D, Trenka M, Break A, Kulig D, Miernik A.
The Effect of Concentrated Microwave Field (CMF) on Selected Physical and Rheological Properties of Liquid Egg Products. *Applied Sciences*. 2021; 11(4):1832.
https://doi.org/10.3390/app11041832

**Chicago/Turabian Style**

Oziembłowski, Maciej, Agnieszka Nawirska-Olszańska, Damian Maksimowski, Magdalena Trenka, Artur Break, Dominika Kulig, and Anna Miernik.
2021. "The Effect of Concentrated Microwave Field (CMF) on Selected Physical and Rheological Properties of Liquid Egg Products" *Applied Sciences* 11, no. 4: 1832.
https://doi.org/10.3390/app11041832