All-Optical Non-Inverted Parity Generator and Checker Based on Semiconductor Optical Amplifiers
Abstract
1. Introduction
2. Principle
2.1. Parity Generator
2.2. Parity Checker
3. Experimental Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Willner, A.E.; Khaleghi, S.; Chitharha, M.R.; Yilmaz, O.F. All-Optical Signal Processing. J. Lightwave Technol. 2014, 32, 660–680. [Google Scholar] [CrossRef]
- Takahashi, M.; Sugizaki, R.; Hiroishi, J.; Tadakuma, M.; Taniguchi, Y.; Yagi, T. Low loss and low-dispersion-slope highly nonlinear fibers. J. Lightwave Technol. 2005, 23, 3615–3624. [Google Scholar] [CrossRef]
- Mears, R.J.; Reekie, L.; Jauncey, I.M.; Payne, D.N. Low noise erbium-doped fiber amplifier operating at 1.54 mm. Electron. Lett. 1987, 23, 1026–1028. [Google Scholar] [CrossRef]
- Vlachos, K.; Zoiros, K.; Houbavlis, T.; Hatziefremidis, A.; Avramopoulos, H. Missing pieces in the puzzle of ultra-high speed all-optical logic. In Proceedings of the LEOS 99 IEEE Lasers and Electro-Optics Society, San Francisco, CA, USA, 8 November 1999; Volume 2, pp. 768–769. [Google Scholar]
- Poustie, A.J.; Blow, K.J.; Kelly, A.E.; Manning, R.J. All-optical parity checker with bit-differential delay. Opt. Commun. 1999, 162, 37–43. [Google Scholar] [CrossRef]
- Kaur, S.; Shukla, M.K. All-optical parity generator and checker circuit employing semiconductor optical amplifier-based Mach-Zehnder interferometers. Opt. Appl. 2017, 47, 263–271. [Google Scholar]
- Kartalopoulos, S.V. Cascadable All-optical XOR Gates for Optical Ciphertext and All-Optical Parity Calculations. In Proceedings of the SPIE-The International Society for Optical Engineering, Prague, Czech Republic, 4 April 2007. [Google Scholar]
- Aikawa, Y.; Shimizu, S.; Uenohara, H. Demonstration of All-Optical Divider Circuit Using SOA-MZI-Type XOR Gate and Feedback Loop for Forward Error Detection. J. Lightwave Technol. 2011, 29, 2259–2266. [Google Scholar] [CrossRef]
- Dimitriadou, E.; Zoiros, K.E.; Chattopadhyay, T.; Roy, J.N. Design of ultrafast all-optical 4-bit parity generator and checker using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. J. Comput. Electron. 2013, 12, 481–489. [Google Scholar] [CrossRef]
- Suzuki, M.; Uenohara, H. Investigation of all-optical error detection circuit using SOA-MZI-based XOR gates at 10 Gbits. Electron. Lett. 2009, 45, 224–225. [Google Scholar] [CrossRef]
- Nair, N.; Kaur, S.; Goyal, R. All-optical Integrated Parity Generator and Checker Using an SOA-based Optical Tree Architecture. Curr. Opt. Photonics 2018, 2, 400–406. [Google Scholar]
- Bhattacharyya, A.; Kumar Gayen, D.; Chattopadhyay, T. All-optical parallel parity generator circuit with the help of semiconductor optical amplifier (SOA)-assisted Sagnac switches. Opt. Commun. 2014, 313, 99–105. [Google Scholar] [CrossRef]
- Yongjun, W.; Xinyu, L.; Qinghua, T. All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers. Opt. Commun. 2018, 410, 846–854. [Google Scholar]
- Kotb, A.; Zoiros, K.E.; Guo, C.L. All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules. Opt. Laser Technol. 2018, 108, 426–433. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Guo, C.L. Performance investigation of 120 Gbs all-optical logic XOR gate using dual-reflective semiconductor optical amplifier-based scheme. J. Comput. Electron. 2018, 17, 1640–1649. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Guo, C.L. 320 Gbs all-optical XOR gate using semiconductor optical amplifier Mach–Zehnder interferometer and delayed interferometer. Photonic Netw. Commun. 2019, 38, 177–184. [Google Scholar] [CrossRef]
- Dong, W.C.; Huang, Z.Y.; Hou, J. Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Opt. Lett. 2018, 43, 2150–2153. [Google Scholar] [CrossRef] [PubMed]
- Akashi, Y.; Matsui, S.; Isawa, S. Demonstration of All-Optical Logic Gate Device Using MQW-SOA and 10 Gbps XNOR Operation. Phys. Status Solidi A 2018, 216, 1800529. [Google Scholar] [CrossRef]
- Singh, K.; Kaur, G.; Singh, M.L. Performance analysis of an all-optical half-subtracter based on XGM in SOA at 20 Gbps. Optoelectron. Adv. Mat. 2017, 11, 189. [Google Scholar]
- Singh, P.; Singh, A.K.; Arun, V.; Dixit, H.K. Design and analysis of all-optical half-adder, half-subtracter and 4-bit decoder based on SOA-MZI configuration. Opt. Quantum Electron. 2016, 48, 159. [Google Scholar] [CrossRef]
- Lei, L.; Dong, J.J.; Zhang, Y. Reconfigurable photonic logic full-adder and full-subtracter based on three-input XOR gate and logic minterms. Electron. Lett. 2012, 48, 399–400. [Google Scholar] [CrossRef]
- Ghosh, P.; Kumbhakar, D.; Mukherjee, A.K. An All-Optical Method of Implementing a Wavelength Encoded Simultaneous Binary Full-Adder Full Subtracter Unit Exploiting Nonlinear Polarization Rotation in Semiconductor Optical Amplifier. Optik 2011, 122, 1757–1763. [Google Scholar] [CrossRef]
- Kaur, S. All-optical data comparator and decoder using SOA-based Mach–Zehnder interferometer. Optik 2013, 124, 2650–2653. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, R.; Kaler, R.S. Photonic processing and realization of an all-optical digital comparator based on semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Eng. 2015, 54, 016104. [Google Scholar] [CrossRef]
A | B | Pe | Po |
---|---|---|---|
0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 1 | 0 | 1 |
A | B | Pe′ | Ce | Result |
---|---|---|---|---|
0 | 1 | 1 | 0 | |
1 | 1 | 0 | 0 | |
0 | 0 | 1 | 1 | Error |
1 | 1 | 1 | 1 | Error |
0 | 1 | 1 | 0 | |
0 | 0 | 0 | 0 | |
1 | 1 | 0 | 0 |
A | B | Po′ | Co | Result |
---|---|---|---|---|
0 | 1 | 0 | 0 | |
1 | 1 | 1 | 0 | |
0 | 0 | 0 | 1 | Error |
1 | 1 | 0 | 1 | Error |
0 | 1 | 0 | 0 | |
0 | 0 | 1 | 0 | |
1 | 1 | 1 | 0 |
Signal | A | B | CLK | TOBPF | Result | |||||
---|---|---|---|---|---|---|---|---|---|---|
Logic | P | W | ER/OSNR | P | W | ER/OSNR | P | W | W | ER/OSNR |
−2.5 | 1550.9 | 11.92/14.95 | × | × | × | −27 | 1552.5 | 1552.5 | 11.75/14.02 | |
× | × | × | −2.5 | 1551.7 | 11.82/12.53 | −27 | 1552.5 | 1552.5 | 11.52/11.83 | |
2 | 1550.9 | 12.96/13.82 | 0 | 1551.7 | 12.04/12.98 | −27 | 1552.5 | 1552.5 | 11.02/11.88 | |
−2.7 | 1550.9 | 11.34/15.6 | −9 | 1551.7 | 5.17/6.81 | × | × | 1551.7 | 11.24/6.47 | |
−9 | 1550.9 | 5.17/6.81 | −2.7 | 1551.7 | 11.34/15.6 | × | × | 1550.9 | 11.21/6.43 | |
2 | 1550.9 | 12.96/13.82 | 0 | 1551.7 | 12.04/12.98 | −27 | 1552.5 | 1552.5 | 8.03/9.46 | |
−2.7 | 1550.9 | 11.34/15.6 | −9 | 1551.7 | 5.17/6.81 | × | × | 1551.7 | 8.36/4.67 | |
−9 | 1550.9 | 5.17/6.81 | −2.7 | 1551.7 | 11.34/15.6 | × | × | 1550.9 | 8.31/4.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Xu, J.; Chen, P.; Guo, R.; Gu, Y.; Ning, Y.; Liu, Y. All-Optical Non-Inverted Parity Generator and Checker Based on Semiconductor Optical Amplifiers. Appl. Sci. 2021, 11, 1499. https://doi.org/10.3390/app11041499
Han B, Xu J, Chen P, Guo R, Gu Y, Ning Y, Liu Y. All-Optical Non-Inverted Parity Generator and Checker Based on Semiconductor Optical Amplifiers. Applied Sciences. 2021; 11(4):1499. https://doi.org/10.3390/app11041499
Chicago/Turabian StyleHan, Bingchen, Junyu Xu, Pengfei Chen, Rongrong Guo, Yuanqi Gu, Yu Ning, and Yi Liu. 2021. "All-Optical Non-Inverted Parity Generator and Checker Based on Semiconductor Optical Amplifiers" Applied Sciences 11, no. 4: 1499. https://doi.org/10.3390/app11041499
APA StyleHan, B., Xu, J., Chen, P., Guo, R., Gu, Y., Ning, Y., & Liu, Y. (2021). All-Optical Non-Inverted Parity Generator and Checker Based on Semiconductor Optical Amplifiers. Applied Sciences, 11(4), 1499. https://doi.org/10.3390/app11041499