Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = semiconductor optical amplifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3942 KiB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 477
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

17 pages, 1494 KiB  
Article
All-Optical Encryption and Decryption at 120 Gb/s Using Carrier Reservoir Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometers
by Amer Kotb, Kyriakos E. Zoiros and Wei Chen
Micromachines 2025, 16(7), 834; https://doi.org/10.3390/mi16070834 - 21 Jul 2025
Viewed by 488
Abstract
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor [...] Read more.
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor optical amplifiers (CR-SOAs) embedded in Mach–Zehnder interferometers (MZIs). The architecture relies on two consecutive exclusive-OR (XOR) logic gates, implemented through phase-sensitive interference in the CR-SOA-MZI structure. The first XOR gate performs encryption by combining the input data signal with a secure optical key, while the second gate decrypts the encoded signal using the same key. The fast gain recovery and efficient carrier dynamics of CR-SOAs enable a high-speed, low-latency operation suitable for modern photonic networks. The system is modeled and simulated using Mathematica Wolfram, and the output quality factors of the encrypted and decrypted signals are found to be 28.57 and 14.48, respectively, confirming excellent signal integrity and logic performance. The influence of key operating parameters, including the impact of amplified spontaneous emission noise, on system behavior is also examined. This work highlights the potential of CR-SOA-MZI-based designs for scalable, ultrafast, and energy-efficient all-optical security applications. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

10 pages, 3798 KiB  
Article
High-Speed Directly Modulated Laser Integrated with SOA
by Jia Chen, Dechao Ban, Ya Jin, Jinhua Bai, Keqi Cao, Xinyan Zhang, Hang Yu, Wei Lin, Xiaonan Chen, Ming Li, Ninghua Zhu and Yu Liu
Photonics 2025, 12(5), 450; https://doi.org/10.3390/photonics12050450 - 6 May 2025
Viewed by 573
Abstract
In this paper, we present a directly modulated laser (DML) using a partially corrugated grating (PCG) and integrated with a semiconductor optical amplifier (SOA). The influence of the quasi-high-pass filter properties of the SOA on the bandwidth was explored, resulting in high optical [...] Read more.
In this paper, we present a directly modulated laser (DML) using a partially corrugated grating (PCG) and integrated with a semiconductor optical amplifier (SOA). The influence of the quasi-high-pass filter properties of the SOA on the bandwidth was explored, resulting in high optical power output at lower current levels, with a bandwidth surpassing 25 GHz and an output power above 25 mW. The PCG design boosts the lasing mode’s resistance to random phase fluctuations at the rear facet, hence boosting the mode stability of the laser with a side-mode suppression ratio (SMSR) of over 44 dB. Furthermore, we performed back-to-back (BTB) 26.5625 Gbps NRZ data transmission experiments at room temperature (25 °C) with a modulation current of 60 mA. The results reveal that the transmitter and dispersion eye closure (TDEC) of the fabricated DML is lower than that of a conventional laser when the SOA area current reaches a specific threshold, demonstrating the enhanced signal transmission capabilities of our design. This laser structure offers a fresh strategy for the development of high-power, high-speed DMLs. Full article
Show Figures

Figure 1

18 pages, 2308 KiB  
Article
High-Speed All-Optical Encoder and Comparator at 120 Gb/s Using a Carrier Reservoir Semiconductor Optical Amplifier
by Amer Kotb and Kyriakos E. Zoiros
Nanomaterials 2025, 15(9), 647; https://doi.org/10.3390/nano15090647 - 24 Apr 2025
Cited by 1 | Viewed by 508
Abstract
All-optical encoders and comparators are essential components for high-speed optical computing, enabling ultra-fast data processing with minimal latency and low power consumption. This paper presents a numerical analysis of an all-optical encoder and comparator architecture operating at 120 Gb/s, based on carrier reservoir [...] Read more.
All-optical encoders and comparators are essential components for high-speed optical computing, enabling ultra-fast data processing with minimal latency and low power consumption. This paper presents a numerical analysis of an all-optical encoder and comparator architecture operating at 120 Gb/s, based on carrier reservoir semiconductor optical amplifier-assisted Mach–Zehnder interferometers (CR-SOA-MZIs). Building upon our previous work on all-optical arithmetic circuits, this study extends the application of CR-SOA-MZI structures to implement five key logic operations between two input signals (A and B): A¯B, AB¯, AB (AND), A¯B¯ (NOR), and AB + A¯B¯ (XNOR). The performance of these logic gates is evaluated using the quality factor (QF), yielding values of 17.56, 17.04, 19.05, 10.95, and 8.33, respectively. We investigate the impact of critical design parameters on the accuracy and stability of the logic outputs, confirming the feasibility of high-speed operation with robust signal integrity. These results support the viability of CR-SOA-MZI-based configurations for future all-optical logic circuits, offering promising potential for advanced optical computing and next-generation photonic information processing systems. Full article
Show Figures

Graphical abstract

60 pages, 13122 KiB  
Review
Advancements in Lithography Techniques and Emerging Molecular Strategies for Nanostructure Fabrication
by Prithvi Basu, Jyoti Verma, Vishnuram Abhinav, Ratneshwar Kumar Ratnesh, Yogesh Kumar Singla and Vibhor Kumar
Int. J. Mol. Sci. 2025, 26(7), 3027; https://doi.org/10.3390/ijms26073027 - 26 Mar 2025
Cited by 4 | Viewed by 5990
Abstract
Lithography is crucial to semiconductor manufacturing, enabling the production of smaller, more powerful electronic devices. This review explores the evolution, principles, and advancements of key lithography techniques, including extreme ultraviolet (EUV) lithography, electron beam lithography (EBL), X-ray lithography (XRL), ion beam lithography (IBL), [...] Read more.
Lithography is crucial to semiconductor manufacturing, enabling the production of smaller, more powerful electronic devices. This review explores the evolution, principles, and advancements of key lithography techniques, including extreme ultraviolet (EUV) lithography, electron beam lithography (EBL), X-ray lithography (XRL), ion beam lithography (IBL), and nanoimprint lithography (NIL). Each method is analyzed based on its working principles, resolution, resist materials, and applications. EUV lithography, with sub-10 nm resolution, is vital for extending Moore’s Law, leveraging high-NA optics and chemically amplified resists. EBL and IBL enable high-precision maskless patterning for prototyping but suffer from low throughput. XRL, using synchrotron radiation, achieves deep, high-resolution features, while NIL provides a cost-effective, high-throughput method for replicating nanostructures. Alignment marks play a key role in precise layer-to-layer registration, with innovations enhancing accuracy in advanced systems. The mask fabrication process is also examined, highlighting materials like molybdenum silicide for EUV and defect mitigation strategies such as automated inspection and repair. Despite challenges in resolution, defect control, and material innovation, lithography remains indispensable in semiconductor scaling, supporting applications in integrated circuits, photonics, and MEMS/NEMS devices. Various molecular strategies, mechanisms, and molecular dynamic simulations to overcome the fundamental lithographic limits are also highlighted in detail. This review offers insights into lithography’s present and future, aiding researchers in nanoscale manufacturing advancements. Full article
Show Figures

Figure 1

15 pages, 2246 KiB  
Article
Cost-Effective Photoacoustic Imaging Using High-Power Light-Emitting Diodes Driven by an Avalanche Oscillator
by Alberto Prud’homme and Frederic Nabki
Sensors 2025, 25(6), 1643; https://doi.org/10.3390/s25061643 - 7 Mar 2025
Cited by 1 | Viewed by 1123
Abstract
Photoacoustic imaging (PAI) is an emerging modality that merges optical and ultrasound imaging to provide high-resolution and functional insights into biological tissues. This technique leverages the photoacoustic effect, where tissue absorbs pulsed laser light, generating acoustic waves that are captured to reconstruct images. [...] Read more.
Photoacoustic imaging (PAI) is an emerging modality that merges optical and ultrasound imaging to provide high-resolution and functional insights into biological tissues. This technique leverages the photoacoustic effect, where tissue absorbs pulsed laser light, generating acoustic waves that are captured to reconstruct images. While lasers have traditionally been the light source for PAI, their high cost and complexity drive interest towards alternative sources like light-emitting diodes (LEDs). This study evaluates the feasibility of using an avalanche oscillator to drive high-power LEDs in a basic photoacoustic imaging system. An avalanche oscillator, utilizing semiconductor avalanche breakdown to produce high-voltage pulses, powers LEDs to generate short, high-intensity light pulses. The system incorporates an LED array, an ultrasonic transducer, and an amplifier for signal detection. Key findings include the successful generation of short light pulses with sufficient intensity to excite materials and the system’s capability to produce detectable photoacoustic signals in both air and water environments. While LEDs demonstrate cost-effectiveness and portability advantages, challenges such as lower power and broader spectral bandwidth compared to lasers are noted. The results affirm that LED-based photoacoustic systems, though currently less advanced than laser-based systems, present a promising direction for affordable and portable imaging technologies. Full article
(This article belongs to the Special Issue Photonics for Advanced Spectroscopy and Sensing)
Show Figures

Figure 1

12 pages, 3771 KiB  
Article
Reflective Semiconductor Optical Amplifier Chip with Low Ripple for C-Band External Cavity Narrow-Linewidth Laser
by Shaojie Li, Haiyang Yu, Haotian Bao, Menghan Ren, Jianguo Liu, Zeqiu Liu and Yulian Cao
Photonics 2025, 12(3), 193; https://doi.org/10.3390/photonics12030193 - 25 Feb 2025
Viewed by 839
Abstract
The main characteristic of a reflective semiconductor optical amplifier chip (RSOA) is that it does not generate optical resonance under electric pumping and maintains the operation state of spontaneous emission. In this paper, a Nb2O5/SiO2/Nb2O [...] Read more.
The main characteristic of a reflective semiconductor optical amplifier chip (RSOA) is that it does not generate optical resonance under electric pumping and maintains the operation state of spontaneous emission. In this paper, a Nb2O5/SiO2/Nb2O5/SiO2 (four-layer Nb2O5/SiO2) film system is employed as the coating material for the output facet of the RSOA. The 3 dB spectral width of the spontaneous emission spectrum from this RSOA reaches 79.4 nm, with a ripple of less than 1 dB occurring across this wavelength range. Notably, around the 1550 nm wavelength, the ripple is as low as 0.5 dB. This represents the best performance reported for this type of chip. The RSOA is packaged as a narrow-linewidth external cavity laser. Under test conditions of 25 °C and 180 mA, the external cavity laser produces an output power of 12.6 mW and achieves a linewidth of 299.8 Hz. Furthermore, by adjusting the Fabry–Pérot (FP) standard cavity, filtering, and other external cavity parameters, the lasing spectrum of the narrow-linewidth external cavity laser based on the RSOA is tunable across a wavelength range from 1535.83 nm to 1561.42 nm, which shows the usability of the proposed ROSA for a C-band external cavity narrow-linewidth laser. Full article
Show Figures

Figure 1

15 pages, 1703 KiB  
Article
High-Performance Optical NOR Gate with SOA-MZI
by Amer Kotb, Kyriakos E. Zoiros and Wei Chen
Photonics 2025, 12(3), 179; https://doi.org/10.3390/photonics12030179 - 21 Feb 2025
Cited by 1 | Viewed by 1097
Abstract
In this paper, we propose a novel design for a NOR gate using a semiconductor optical amplifier combined with a Mach–Zehnder interferometer. By utilizing two inverting input signals, the system achieves the NOR logic function, simplifying the overall architecture and reducing component complexity. [...] Read more.
In this paper, we propose a novel design for a NOR gate using a semiconductor optical amplifier combined with a Mach–Zehnder interferometer. By utilizing two inverting input signals, the system achieves the NOR logic function, simplifying the overall architecture and reducing component complexity. The gate’s performance is evaluated at 80 Gb/s, achieving a high-quality factor of 23.47, demonstrating superior signal integrity and reliability. We analyze the influence of key parameters on the gate’s functionality and assess the impact of amplified spontaneous emission on system performance. This study provides a comprehensive evaluation of the NOR gate and contributes to developing efficient, cost-effective solutions for complex optical logic circuits. Full article
(This article belongs to the Special Issue Enabling Technologies for Optical Communications and Networking)
Show Figures

Figure 1

11 pages, 1696 KiB  
Article
High-Speed and Cost-Efficient NAND Logic Gate Using a Single SOA-DI Configuration
by Amer Kotb, Antonios Hatziefremidis, Gamal Said and Kyriakos E. Zoiros
Photonics 2024, 11(12), 1182; https://doi.org/10.3390/photonics11121182 - 17 Dec 2024
Viewed by 1015
Abstract
In this study, we propose a novel design for a NAND gate using a single semiconductor optical amplifier (SOA) followed by a delay interferometer (DI). This streamlined configuration significantly reduces complexity and cost compared to conventional methods, which typically require cascading multiple SOA-Mach–Zehnder [...] Read more.
In this study, we propose a novel design for a NAND gate using a single semiconductor optical amplifier (SOA) followed by a delay interferometer (DI). This streamlined configuration significantly reduces complexity and cost compared to conventional methods, which typically require cascading multiple SOA-Mach–Zehnder interferometers (SOA-MZIs) for NAND gate implementation. Our approach directly generates the NAND logic output with a single SOA and DI, simplifying the overall design. The gate’s performance is evaluated at 80 Gb/s, achieving a high-quality factor (QF) of 10.75. We also analyze the impact of key parameters to optimize the gate’s functionality. Furthermore, we assess the effect of amplified spontaneous emission on the QF, providing a more comprehensive evaluation of the system’s performance. This research paves the way for more efficient and cost-effective complex optical logic circuit solutions. Full article
(This article belongs to the Special Issue Optical Fiber Amplifiers and Their Applications)
Show Figures

Figure 1

15 pages, 2203 KiB  
Article
OpticalTrust: A Sensor-to-Blockchain Framework Using Free-Space Optical Communication
by Parveen Bajaj, Aman Kataria, Vikram Puri, Sachin Gupta and Hong Min
Sensors 2024, 24(23), 7797; https://doi.org/10.3390/s24237797 - 5 Dec 2024
Cited by 2 | Viewed by 1044
Abstract
In the dynamic landscape of the tech industry, the escalating requirement for swift and secure data transmission has catalyzed innovation in integrated communication systems. Free-Space Optics (FSOs) has emerged as a promising contender in optical communications. While conventional optical fiber systems can achieve [...] Read more.
In the dynamic landscape of the tech industry, the escalating requirement for swift and secure data transmission has catalyzed innovation in integrated communication systems. Free-Space Optics (FSOs) has emerged as a promising contender in optical communications. While conventional optical fiber systems can achieve bit rates of up to 40 Gbps with proper design, they are limited primarily by electronics rather than semiconductor laser capabilities. This study presents an integrated framework that combines FSOs, blockchain technology, and sensor networks to address challenges in data transmission, security, and environmental adaptation. This study analyzes FSOs system performance through the Quality (Q) Factor and Bit Error Rate (BER), comparing systems with and without Erbium-Doped Fiber Amplifiers (EDFAs) across various bit rates (8, 12, 16, and 20 Gbps) and transmission distances (5–25 km). To enhance data security and reliability, a blockchain architecture is incorporated with smart contracts and an InterPlanetary File System (IPFS) for storing and validating results generated from FSOs simulation. Additionally, this study explores the design of sensor network models for FSOs technology by investigating how distributed sensor arrays can be theoretically integrated with FSOs systems, with testing focused on FSOs performance and blockchain implementation. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 4423 KiB  
Article
Key-Space-Enhanced Optical Chaos Secure Communication Scheme Using Integrated Mutually Coupled Lasers
by Qingtian Li, Yuanyuan Guo, Zhiwei Jia, Longsheng Wang and Anbang Wang
Photonics 2024, 11(12), 1144; https://doi.org/10.3390/photonics11121144 - 5 Dec 2024
Cited by 2 | Viewed by 947
Abstract
We present a key-space-enhanced optical chaos secure communication scheme using a pair of integrated four-section semiconductor lasers as transceivers, which are commonly driven by a DFB laser with bidirectional injection. The transceiver consists of two DFB laser sections, which are mutually coupled through [...] Read more.
We present a key-space-enhanced optical chaos secure communication scheme using a pair of integrated four-section semiconductor lasers as transceivers, which are commonly driven by a DFB laser with bidirectional injection. The transceiver consists of two DFB laser sections, which are mutually coupled through a passive phase section and an amplifier section. The center frequencies, bias currents, coupling rate, and phase shift of the integrated laser can be used as physical key parameters and thus enhance the dimension of key space. The numerical results show that a physical key space of about 270 is achieved with a data rate of 10 Gbit/s. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

19 pages, 2562 KiB  
Review
Review on Principal and Applications of Temporal and Spatial Beam Shaping for Ultrafast Pulsed Laser
by Jong Hyun Kim and Hae Woon Choi
Photonics 2024, 11(12), 1140; https://doi.org/10.3390/photonics11121140 - 4 Dec 2024
Cited by 4 | Viewed by 2352
Abstract
Ultrafast or ultrashort pulsed lasers have become integral in numerous industrial applications due to their high precision, non-thermal interaction with materials, and ability to induce nonlinear absorption. These characteristics have expanded their use in microfabrication, semiconductor processing, automotive engineering, and biomedical fields. Temporal [...] Read more.
Ultrafast or ultrashort pulsed lasers have become integral in numerous industrial applications due to their high precision, non-thermal interaction with materials, and ability to induce nonlinear absorption. These characteristics have expanded their use in microfabrication, semiconductor processing, automotive engineering, and biomedical fields. Temporal pulse shaping reduces laser pulse durations, often to shorter timescales than many physical and chemical processes, enabling greater control. Meanwhile, spatial shaping improves efficiency and precision in micro- and nanofabrication and biomedical applications. Advances in optical parametric amplifiers (OPAs) and chirped-pulse amplifiers (CPAs) have allowed for more refined temporal and spatial shaping, ensuring the preservation of high peak power while achieving ultrashort pulse durations. Additionally, spatial light modulators (SLMs) have facilitated sophisticated beam shaping, which, when combined with ultrafast lasers, supports applications like computer-generated holography and nanoscale fabrication. These developments underscore the growing utility and versatility of ultrafast lasers in both research and industrial contexts. Full article
Show Figures

Figure 1

11 pages, 4060 KiB  
Communication
Study of a Crosstalk Suppression Scheme Based on Double-Stage Semiconductor Optical Amplifiers
by Xintong Lu, Xinyu Ma and Baojian Wu
Sensors 2024, 24(19), 6403; https://doi.org/10.3390/s24196403 - 2 Oct 2024
Viewed by 1203
Abstract
An all-optical crosstalk suppression scheme is desirable for wavelength and space division multiplexing optical networks by improving the performance of the corresponding nodes. We put forward a scheme comprising double-stage semiconductor optical amplifiers (SOAs) for wavelength-preserving crosstalk suppression. The wavelength position of the [...] Read more.
An all-optical crosstalk suppression scheme is desirable for wavelength and space division multiplexing optical networks by improving the performance of the corresponding nodes. We put forward a scheme comprising double-stage semiconductor optical amplifiers (SOAs) for wavelength-preserving crosstalk suppression. The wavelength position of the degenerate pump in the optical phase conjugation (OPC) is optimized for signal-to-crosstalk ratio (SXR) improvement. The crosstalk suppression performance of the double-stage SOA scheme for 20 Gb/s quadrature phase shift keying (QPSK) signals is investigated by means of simulations, including the input SXR range and the crosstalk wavelength deviation. For the case with identical-frequency crosstalk, the double-stage SOA scheme can achieve equivalent SXR improvement of 1.5 dB for an input SXR of 10 dB. Thus, the double-stage SOA scheme proposed here is more suitable for few-mode fiber systems and networks. Full article
Show Figures

Figure 1

16 pages, 15870 KiB  
Article
Active Region Mode Control for High-Power, Low-Linewidth Broadened Semiconductor Optical Amplifiers for Light Detection and Ranging
by Hui Tang, Meng Zhang, Lei Liang, Tianyi Zhang, Li Qin, Yue Song, Yuxin Lei, Peng Jia, Yubing Wang, Cheng Qiu, Chuantao Zheng, Xin Li, Yongyi Chen, Dan Li, Yongqiang Ning and Lijun Wang
Sensors 2024, 24(18), 6083; https://doi.org/10.3390/s24186083 - 20 Sep 2024
Cited by 1 | Viewed by 1152
Abstract
This paper introduces a semiconductor optical amplifier (SOA) with high power and narrow linewidth broadening achieved through active region mode control. By integrating mode control with broad-spectrum epitaxial material design, the device achieves high gain, high power, and wide band output. At a [...] Read more.
This paper introduces a semiconductor optical amplifier (SOA) with high power and narrow linewidth broadening achieved through active region mode control. By integrating mode control with broad-spectrum epitaxial material design, the device achieves high gain, high power, and wide band output. At a wavelength of 1550 nm and an ambient temperature of 20 °C, the output power reaches 757 mW when the input power is 25 mW, and the gain is 21.92 dB when the input power is 4 mW. The 3 dB gain bandwidth is 88 nm, and the linewidth expansion of the input laser after amplification through the SOA is only 1.031 times. The device strikes a balance between high gain and high power, offering a new amplifier option for long-range light detection and ranging (LiDAR). Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 6131 KiB  
Article
Quantum-Dash Semiconductor Optical Amplifier for Millimeter-Wave over Fibre Wireless Fronthaul Systems
by Xiaoran Xie, Youxin Mao, Chunying Song, Zhenguo Lu, Philip J. Poole, Jiaren Liu, Mia Toreja, Yang Qi, Guocheng Liu, Daniel Poitras, Penghui Ma, Pedro Barrios, John Weber, Ping Zhao, Martin Vachon, Mohamed Rahim, Xianling Chen, Ahmad Atieh, Xiupu Zhang and Jianping Yao
Photonics 2024, 11(9), 826; https://doi.org/10.3390/photonics11090826 - 1 Sep 2024
Cited by 1 | Viewed by 1234
Abstract
This paper demonstrates a five-layer InAs/InP quantum-dash semiconductor optical amplifier (QDash-SOA), which will be integrated into microwave-photonic on-chip devices for millimeter-wave (mmWave) over fibre wireless networking systems. A thorough investigation of the QDash-SOA is conducted regarding its communication performance at different temperatures, bias [...] Read more.
This paper demonstrates a five-layer InAs/InP quantum-dash semiconductor optical amplifier (QDash-SOA), which will be integrated into microwave-photonic on-chip devices for millimeter-wave (mmWave) over fibre wireless networking systems. A thorough investigation of the QDash-SOA is conducted regarding its communication performance at different temperatures, bias currents, and input powers. The investigation shows a fibre-to-fibre (FtF) small-signal gain of 18.79 dB and a noise figure of 6.3 dB. In a common application with a 300 mA bias current and 25 °C temperature, the peak FtF gain is located at 1507.8 nm, which is 17.68 dB, with 3 dB gain bandwidth of 56.6 nm. Furthermore, the QDash-SOA is verified in a mmWave radio-over-fibre link with QAM (32 Gb/s 64-QAM 4-GBaud) and OFDM (250 MHz 64-QAM) signals. The average error vector magnitude of the QAM and OFDM signals after a 2 m wireless link could be as low as 8.29% and 6.78%, respectively. These findings highlight the QDash-SOA’s potential as a key amplifying component in future integrated microwave-photonic on-chip devices. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

Back to TopTop