# A Tunable Metamaterial Joint for Mechanical Shock Applications Inspired by Carbon Nanotubes

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design and Microstructure of the Joint

## 3. Experimental Characterization of the UV Resin After-Curing Mechanical Behavior

## 4. Results

#### 4.1. Fundamental Equations and Numerical Process

#### 4.2. Mesh, Material Properties, and Boundary Conditions

## 5. Evaluation and Characterization of the Compressive Behavior of the Joint

#### 5.1. Linear Elastic Buckling Analysis

#### 5.2. Static Elastoplastic Analysis

#### 5.3. Dynamic Impact Analysis

## 6. Concluding Remarks

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Zhang, Q.; Huang, J.-Q.; Qian, W.-Z.; Zhang, Y.; Wei, F. The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage. Small
**2013**, 9, 1237–1265. [Google Scholar] [CrossRef] [PubMed] - Surjadi, J.U.; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, N.X.; Lu, Y. Mechanical Metamaterials and Their Engineering Applications. Adv. Eng. Mater.
**2019**, 21, 1800864. [Google Scholar] [CrossRef] [Green Version] - Wu, Q.; Miao, W.-S.; Zhang, Y.-D.; Gao, H.-J.; Hui, D. Mechanical properties of nanomaterials: A review. Nanotechnol. Rev.
**2020**, 9, 259–273. [Google Scholar] [CrossRef] - Gouadec, G.; Colomban, P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater.
**2007**, 53, 1–56. [Google Scholar] [CrossRef] [Green Version] - Guz, I.; Rodger, A.; Guz, A.; Rushchitsky, J. Developing the mechanical models for nanomaterials. Compos. Part A Appl. Sci. Manuf.
**2007**, 38, 1234–1250. [Google Scholar] [CrossRef] - Ariga, K.; Mori, T.; Hill, J.P. Mechanical Control of Nanomaterials and Nanosystems. Adv. Mater.
**2012**, 24, 158–176. [Google Scholar] [CrossRef] - Tang, Q.; Zhou, Z.; Chen, Z. Graphene-related nanomaterials: Tuning properties by functionalization. Nanoscale
**2013**, 5, 4541–4583. [Google Scholar] [CrossRef] - Baimova, Y.A.; Murzaev, R.T.; Dmitriev, S. Mechanical properties of bulk carbon nanomaterials. Phys. Solid State
**2014**, 56, 2010–2016. [Google Scholar] [CrossRef] - Zaeri, M.; Ziaei-Rad, S.; Vahedi, A.; Karimzadeh, F. Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon
**2010**, 48, 3916–3930. [Google Scholar] [CrossRef] - Wang, Z.; Gao, F.; Li, N.; Qu, N.; Gou, H.; Hao, X. Density functional theory study of hexagonal carbon phases. J. Phys. Condens. Matter
**2009**, 21, 235401. [Google Scholar] [CrossRef] - Liarte, D.B.; Stenull, O.; Lubensky, T.C. Multifunctional twisted kagome lattices: Tuning by pruning mechanical metamaterials. Phys. Rev. E
**2020**, 101, 063001. [Google Scholar] [CrossRef] [PubMed] - Su, Y.; Xu, X.; Shi, J.; Huang, G. A 3D Mechanism-driven Hexagonal Metamaterial: Evaluation of Auxetic Behavior. Int. J. Mech. Sci.
**2021**, 209, 106699. [Google Scholar] [CrossRef] - Ren, X.; Shen, J.; Ghaedizadeh, A.; Tian, H.; Xie, Y.M. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties. Smart Mater. Struct.
**2015**, 24, 095016. [Google Scholar] [CrossRef] - Cui, H.; Hensleigh, R.; Chen, H.; Zheng, X. Additive Manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials. J. Mater. Res.
**2018**, 33, 360–371. [Google Scholar] [CrossRef] [Green Version] - Dragoni, E.; Ciace, V.A. Mechanical design and modelling of lightweight additively manufactured lattice structures evolved from regular three-dimensional tessellations. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2021**, 235, 1759–1773. [Google Scholar] [CrossRef] - Wickeler, A.L.; Naguib, H.E. Novel origami-inspired metamaterials: Design, mechanical testing and finite element modelling. Mater. Des.
**2020**, 186, 108242. [Google Scholar] [CrossRef] - Mizzi, L.; Attard, D.; Gatt, R.; Dudek, K.K.; Ellul, B.; Grima, J.N. Implementation of periodic boundary conditions for loading of mechanical metamaterials and other complex geometric microstructures using finite element analysis. Eng. Comput.
**2020**, 37, 1765–1779. [Google Scholar] [CrossRef] - Ghaedizadeh, A.; Shen, J.; Ren, X.; Xie, Y.M. Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity. Materials
**2016**, 9, 54. [Google Scholar] [CrossRef] - Coulais, C. As the extension, so the twist. Science
**2017**, 358, 994–995. [Google Scholar] [CrossRef] - Cheng, L.; Tang, T.; Yang, H.; Hao, F.; Wu, G.; Lyu, F.; Bu, Y.; Zhao, Y.; Zhao, Y.; Liu, G.; et al. The Twisting of Dome-Like Metamaterial from Brittle to Ductile. Adv. Sci.
**2021**, 8, 2002701. [Google Scholar] [CrossRef] - Ji, J.; Luo, Q.; Ye, K. Vibration control based metamaterials and origami structures: A state-of-the-art review. Mech. Syst. Signal Process.
**2021**, 161, 107945. [Google Scholar] [CrossRef] - Chen, Y.-L.; Wang, X.-T.; Ma, L. Damping mechanisms of CFRP three-dimensional double-arrow-head auxetic metamaterials. Polym. Test.
**2020**, 81, 106189. [Google Scholar] [CrossRef] - Qiao, J.; Chen, C. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs. Int. J. Impact Eng.
**2015**, 83, 47–58. [Google Scholar] [CrossRef] - Ma, L.; Chen, Y.-L.; Yang, J.-S.; Wang, X.-T.; Ma, G.-L.; Schmidt, R.; Schröder, K.-U. Modal characteristics and damping enhancement of carbon fiber composite auxetic double-arrow corrugated sandwich panels. Compos. Struct.
**2018**, 203, 539–550. [Google Scholar] [CrossRef] - Miniaci, M.; Krushynska, A.; Bosia, F.; Pugno, N.M. Large scale mechanical metamaterials as seismic shields. New J. Phys.
**2016**, 18, 083041. [Google Scholar] [CrossRef] - Van Belle, L.; Claeys, C.; Deckers, E.; Desmet, W. On the impact of damping on the dispersion curves of a locally resonant metamaterial: Modelling and experimental validation. J. Sound Vib.
**2017**, 409, 1–23. [Google Scholar] [CrossRef] - Rebelo, H.; Lecompte, D.; Cismasiu, C.; Jonet, A.; Belkassem, B.; Maazoun, A. Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding. Int. J. Impact Eng.
**2019**, 131, 162–173. [Google Scholar] [CrossRef] - Santos, F.; Rebelo, H.; Coutinho, M.; Sutherland, L.; Cismasiu, C.; Farina, I.; Fraternali, F. Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg. Compos. Struct.
**2021**, 256, 113128. [Google Scholar] [CrossRef] - Chen, X.; Ji, Q.; Wei, J.; Tan, H.; Yu, J.; Zhang, P.; Laude, V.; Kadic, M. Light-weight shell-lattice metamaterials for mechanical shock absorption. Int. J. Mech. Sci.
**2020**, 169, 105288. [Google Scholar] [CrossRef] - Brecher, C.; Fey, M.; Bäumler, S. Damping models for machine tool components of linear axes. CIRP Ann.
**2013**, 62, 399–402. [Google Scholar] [CrossRef] - Kołoczek, J.; Kwon, Y.-K.; Burian, A. Characterization of spatial correlations in carbon nanotubes-modelling studies. J. Alloys Compd.
**2001**, 328, 222–225. [Google Scholar] [CrossRef] - Shan, J.; Yang, Z.; Chen, G.; Hu, Y.; Luo, Y.; Dong, X.; Zheng, W.; Zhou, W. Design and Synthesis of Free-Radical/Cationic Photosensitive Resin Applied for 3D Printer with Liquid Crystal Display (LCD) Irradiation. Polymers
**2020**, 12, 1346. [Google Scholar] [CrossRef] [PubMed] - Ahmad, K.W.H.; Mohamad, Z.; Othman, N.; Man, S.H.C.; Jusoh, M. The mechanical properties of photopolymer prepared via 3d stereolithography printing: The effect of uv curing time and anisotropy. Chem. Eng. Trans.
**2020**, 78, 565–570. [Google Scholar] - LUSAS Version 15.0: Theory Volume Manual 1 and 2; LUSAS: Kingston Upon Thames: Surrey, UK, 2013.
- Chowdhury, I.; Dasgupta, S.P. Computation of Rayleigh damping coefficients for large systems. Electron. J. Geotech. Eng.
**2003**, 8, 1–11. [Google Scholar] - Liao, F.; Zeng, X.-R.; Li, H.-Q.; Lai, X.-J.; Zhao, F.-C. Synthesis and properties of UV curable polyurethane acrylates based on two different hydroxyethyl acrylates. J. Central South Univ.
**2012**, 19, 911–917. [Google Scholar] [CrossRef] - Malas, A.; Isakov, D.; Couling, K.; Gibbons, G.J. Fabrication of High Permittivity Resin Composite for Vat Photopolymerization 3D Printing: Morphology, Thermal, Dynamic Mechanical and Dielectric Properties. Materials
**2019**, 12, 3818. [Google Scholar] [CrossRef] [PubMed] [Green Version] - McLaskey, G.C.; Glaser, S.D. Hertzian impact: Experimental study of the force pulse and resulting stress waves. J. Acoust. Soc. Am.
**2010**, 128, 1087–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 3.**Experimental equipment for investigating the mechanical properties of the raw material: (

**a**) utilized 3D printer, (

**b**) 3D-printed specimens, and (

**c**) their testing in the utilized tensile machine.

**Figure 6.**Critical buckling: (

**a**) deformed meshed geometry of the joint and (

**b**) contours of the strain energy density of the triple-wall wireframe (in the range of 0–100 arbitrary units).

**Figure 8.**Experimental setup for measuring the static compressive behavior of the 3D-printed joint: (

**a**) curing of some parts after their printing, (

**b**) an undeformed 3D-printed joint, and (

**c**) a deformed joint prototype during the compression test (180 small recesses are printed around the flywheel to help the rotation angle measurements).

**Figure 9.**Joint just before fracture: (

**a**) first two points of failure in the deformed mesh and (

**b**) contours of rotational displacement on the flywheel.

**Figure 10.**Relation between twisting and the vertical axial deflection of the middle flywheel due to the joint axial compression.

**Figure 11.**Time variation of the upper face vertical deflection under a half−sine impact shock characterized by a frequency of (

**a**) 30 Hz, (

**b**) 40 Hz, and (

**c**) 50 Hz, for a variety of mass additions around the flywheel perimeter.

**Figure 12.**Time variation of the middle flywheel axial rotation under a half−sine impact shock characterized by a frequency of (

**a**) 30 Hz, (

**b**) 40 Hz, and (

**c**) 50 Hz, for a variety of mass additions around the flywheel perimeter.

**Figure 13.**Time variation of both the total strain energy and plastic deformation work in the wireframes under a 50 Hz half-sine impact shock, for zero and 4 kg/m mass addition around the flywheel perimeter.

**Figure 14.**Total plastic deformation work in the wireframes versus the mass addition around the flywheel perimeter for several impact frequencies.

Creality LD-002H UV Resin 3D Printer | ASTM Standardized 3D Printed Specimens | ||
---|---|---|---|

Specification | Value | Property | Value |

Modeling Technology: | LCD | Layer Height: | 0.05 mm |

Print Size: | 130 mm × 82 mm × 160 mm | Bottom Layer Count: | 8 |

Print Speed: | 1–4 s/layer | Exposure Time: | 6 s |

Screen: | 3.5-inch touch screen | Bottom Exposure Time: | 50 s |

Machine Size: | 221 mm × 221 mm × 403 mm | Light-off Delay: | 0 |

Package Size: | 295 mm × 295 mm × 540 mm | Bottom Light-off Delay: | 0 |

Machine Weight: | 8.3 kg | Bottom Lift Distance: | 5 mm |

Layer Height: | 0.03–0.05 mm | Lifting Distance: | 5 mm |

XY axis Precision: | 0.051 mm | Bottom Lift Speed: | 20 mm/min |

Lifting Speed: | 65 mm/min | ||

Retract Speed: | 100 mm/min |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Giannopoulos, G.I.; Georgantzinos, S.K.
A Tunable Metamaterial Joint for Mechanical Shock Applications Inspired by Carbon Nanotubes. *Appl. Sci.* **2021**, *11*, 11139.
https://doi.org/10.3390/app112311139

**AMA Style**

Giannopoulos GI, Georgantzinos SK.
A Tunable Metamaterial Joint for Mechanical Shock Applications Inspired by Carbon Nanotubes. *Applied Sciences*. 2021; 11(23):11139.
https://doi.org/10.3390/app112311139

**Chicago/Turabian Style**

Giannopoulos, Georgios I., and Stylianos K. Georgantzinos.
2021. "A Tunable Metamaterial Joint for Mechanical Shock Applications Inspired by Carbon Nanotubes" *Applied Sciences* 11, no. 23: 11139.
https://doi.org/10.3390/app112311139