HCL Control Strategy for an Adaptive Roadway Lighting Distribution
Abstract
1. Introduction
2. Materials and Methods
2.1. Zonal Flux
2.2. Freeform Surface
2.3. Geometric Analysis of Optical Refraction Surface in Roadway Lighting
2.4. Establish the Freeform Surface Formula for a Roadway Lighting Lens
2.4.1. Incident Ray Surface
2.4.2. Freeform Surface Refractive Lens Area
2.5. Secondary Optical Design of a Roadway Lighting Lens
2.5.1. The Applied LED Light Source
2.5.2. Lens Design of Roadway Lighting
3. Results
3.1. An Overview of the Human-Centric Intelligent Roadway Lighting Syterm
3.2. The Operation of the Human-Centric Intelligent Roadway Lighting System
3.3. The Benefits of the Human-Centric Intelligent Roadway Lighting System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alan, M. Solid state lighting—A world of expanding opportunities at LED 2002. III-Vs Rev. 2003, 16, 30–33. [Google Scholar]
- Brodrick, J. Next-generation lighting initiative at the U.S. department of energy catalyzing science into the marketplace. IEEE J. Disp. Technol. 2007, 3, 91–97. [Google Scholar] [CrossRef]
- Liu, M.; Rong, B.; Salemink, H.W. Evaluation of LED application in general lighting. Opt. Eng. 2007, 46, 074002. [Google Scholar]
- U.S. Department of Energy. Illuminating the Challenges Solidstate Lighting Program Planning Workshop Report; U.S. Department of Energy: Washington, DC, USA, 2003.
- Sun, C.C.; Chien, W.T.; Moreno, I.; Hsieh, C.C.; Lo, Y.C. Analysis of the far-field region of LEDs. Opt. Express 2009, 17, 13918–13927. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Bergmans, J.W.M.; Schenk, T.C.W.; Linnartz, J.P.M.G.; Rietman, R. Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective. IEEE Trans. Signal Process. 2009, 57, 1044–1057. [Google Scholar] [CrossRef]
- Moreno, I.; Avendaño-Alejo, M.; Tzonchev, R.I. Designing light-emitting diode arrays for uniform near field irradiance. Appl. Opt. 2006, 45, 2265–2272. [Google Scholar] [CrossRef] [PubMed]
- Parkyn, W.A.; Pelka, D.G. New TIR lens applications for light-emitting diodes. Proc. SPIE Nonimaging Opt. 1997, 3139, 135–140. [Google Scholar]
- Bortz, J.; Shatz, N.; Pitou, D. Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target. Proc. SPIE 2000, 4092, 130–138. [Google Scholar]
- Bortz, J.; Shatz, N.; Keuper, M. Optimal design of a non-imaging TIR doublet lens for an illumination system using an LED source. Proc. SPIE Non-Imaging Opt. Effic. Illum. Syst. 2004, 5529, 8–16. [Google Scholar]
- Domhardt, A.; Weingaertner, S.; Rohlfing, U.; Lemmer, U. TIR Optics for Non-Rotationally Symmetric Illumination Design. Proc. SPIE Illum. Opt. 2008, 7103, 710304-1-11. [Google Scholar]
- Wang, L.; Qian, K.; Luo, Y. Discontinuous Freeform lens design for prescribed irradiance. Appl. Opt. 2007, 46, 3716–3723. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Ding, S.; Jin, J.; Guo, T. A Free-form Total Internal Reflection (TIR) Lens for Illumination. In Proceedings of the Seventh International Symposium on Precision Engineering Measurements and Instrumentation, Lijiang, China, 7–11 August 2011; Volume 8321, p. 832110-1-9. [Google Scholar]
- Ding, Y.; Liu, X.; Zheng, Z.R.; Gu, P.F. Secondary optical design for LED illumination using freeform lens. Proc. SPIE Illum. Opt. 2008, 7103, 71030k-1-8. [Google Scholar]
- Vazquez-Molini, D.; Gonzalez-Montez, M.; Alvarez, A.; Bernabeu, E. High-efficiency light-emitting diode collimator. Opt. Eng. 2010, 49, 123001. [Google Scholar] [CrossRef]
- Chen, J.J.; Wang, T.Y.; Huang, K.L.; Liu, T.S.; Tsai, M.D.; Lin, C.T. Freeform lens design for LED collimating illumination 2012 Optical Society of Anerica. Opt. Express 2012, 20, 10984–10995. [Google Scholar] [CrossRef]
- Chen, J.J.; Lin, C.T. Freeform surface design for a light-emitting diode–based collimating lens. Proc. SPIE Opt. Eng. 2010, 49, 093001-1-8. [Google Scholar] [CrossRef]
- Ding, T.; Liu, X.; Zheng, Z.R.; Gu, P.F. Freeform LED lens for uniform illumination. Opt. Express 2008, 16, 12958–12966. [Google Scholar] [CrossRef]
- Luo, Y.; Feng, Z.; Han, Y.; Li, H. Design of compact and smooth free-form optical system with uniform illuminance for LED source. Opt. Express 2010, 18, 9055–9063. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Y.; Jia, Z.; Zhang, W. The Optimal Design of TIR Lens for Improving LED Illumination Uniformity and Efficiency. Proc. SPIE Opt. Des. Test. III 2007, 6834, 6834k-1-8. [Google Scholar]
- Kudaev, S.; Schreiber, P. Optimization of symmetrical free-shape non-imaging concentrators for LED light source applications. Proc. SPIE 2005, 5942, 594209-1-10. [Google Scholar]
- Hu, R.; Luo, X.; Zheng, H.; Qin, Z.; Gan, Z.; Wu, B.; Liu, S. Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating. Opt. Express 2012, 20, 13727–13737. [Google Scholar] [CrossRef][Green Version]
- Jiang, J.; To, S.; Lee, W.B.; Cheung, B. Optical design of a freeform TIR lens for LED streetlight. OPTIK 2010, 121, 1761–1765. [Google Scholar] [CrossRef]
- Wang, K.; Luo, X.; Liu, Z.; Zhou, B.; Gan, Z.; Liu, S. Optical analysis of an 80-W light-emitting-diode street lamp. Opt. Eng. 2008, 47, 013002. [Google Scholar] [CrossRef]
- Moiseev, M.A.; Doskolovich, L.L.; Kazanskiy, N.L. Design of high-efficient freeform LED lens for illumination of elongated rectangular regions. Opt. Express 2011, 19, A225–A233. [Google Scholar] [CrossRef]
- Wang, K.; Chen, F.; Liu, Z.; Luo, X.; Liu, S. Design of compact freeform lens for application specific light-emitting diode packaging. Opt. Express 2010, 18, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, K.; Chen, F.; Liu, S. New freeform lenses for white LEDs with high color spatial uniformity. Opt. Express 2012, 20, 24418–24428. [Google Scholar] [CrossRef] [PubMed]
- Publikacja, C.I.E. CIE 115-2010: Lighting of Roads for Motor and Pedestrian Traffic; CIE: Vienna, Austria, 2010. [Google Scholar]
- Illuminating Engineering Society. Roadway Lighting (ANSI/IES RP-8-14); Illuminating Engineering Society of North America: New York, NY, USA, 2014. [Google Scholar]
- The International Commission on Illumination. CIE 140—2000 Road Lighting Calculations Technical Report; The International Commission on Illumination: Vienna, Austria, 2000. [Google Scholar]
- Fiorentin, P.; Scroccaro, A. The importance of testing road lighting plants: A simple system for their assessment. In Proceedings of the International Instrumentation and Measurement Technology Conference, I2MTC, Singapore, 5–7 May 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Jaskowski, P.; Tomczuk, P. Analysis of the measurement plane change in street illumination measurements. In Proceedings of the 2020 Fifth Junior Conference on Lighting (Lighting), Ruse, Bulgaria, 24–26 September 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Baleja, R.; Sokanský, K.; Novák, T.; Hanusek, T.; Bos, P. Measurement and Evaluation of the Road Lighting in Mesopic and Photopic Vision. In Proceedings of the 2016 Fifth Junior Conference on Lighting (Lighting), Karpacz, Poland, 13–16 September 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Baleja, R.; Helštýnová, B.; Sokanský, K.; Novák, T. Measurement of luminance ratios at pedestrian crossings. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Wandachowicz, K.; Przybyla, M. The Measurements of the Parameters of Road Lighting—Theory and Practice. In Proceedings of the 2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4), Trebic, Czech Republic, 18–20 September 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Kang, Y.L. Optical Design of LED Street Lamps. Master’s Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, 2011. [Google Scholar]
- LUMILEDS. Available online: https://lumileds.com/products/high-power-leds/luxeon-rebel-es/ (accessed on 20 August 2021).
- Guo, L.; Eloholma, M.; Halonen, L. Luminance Monitoring and Optimization of luminance metering in intelligent road lighting control systems. Ing. Iluminatului 2007, 9, 24–40. [Google Scholar]
Zonal Zone | Zonal Coefficient |
---|---|
0–10 | 0.095 |
10–20 | 0.283 |
20–30 | 0.463 |
30–40 | 0.628 |
40–50 | 0.774 |
50–60 | 0.897 |
60–70 | 0.993 |
70–80 | 1.058 |
80–90 | 1.091 |
Zonal Angle
| Average Intensity | Zonal Coefficient | Zonal Flux |
---|---|---|---|
0–10 | 31.6 | 0.095 | 3 |
10–20 | 30.6 | 0.283 | 8.7 |
20–30 | 28.7 | 0.463 | 13.3 |
30–40 | 26.0 | 0.628 | 16.3 |
40–50 | 22.4 | 0.774 | 17.4 |
50–60 | 18.2 | 0.897 | 16.3 |
60–70 | 13.4 | 0.993 | 13.3 |
70–80 | 8.2 | 1.058 | 8.7 |
80–90 | 2.8 | 1.091 | 3 |
Total zonal flux (lm) | 100 |
LUXEON Rebel ES LED | Specifications |
---|---|
Luminous flux | 106 lm (350 mA)/190 lm (700 mA) |
Max DC forward current | 1200 mA |
Forward voltage | 2.9 V (350 mA)/3.05 V (700 mA) |
CCT range | 2700 K~5000 K |
CRI | 85 |
Viewing angle (FWHM) | 120° |
Zonal Angle
| Average Intensity | Zonal Coefficient | Zonal Flux | Flux Percentage |
---|---|---|---|---|
0–10 | 47.4 | 0.095 | 4.5 | 3 |
10–20 | 46.0 | 0.283 | 13.0 | 8.7 |
20–30 | 43.1 | 0.463 | 20.0 | 13.3 |
30–40 | 39.0 | 0.628 | 24.5 | 16.3 |
40–50 | 33.7 | 0.774 | 26.1 | 17.4 |
50–60 | 27.3 | 0.897 | 24.5 | 16.3 |
60–70 | 20.1 | 0.993 | 20.0 | 13.3 |
70–80 | 12.3 | 1.058 | 13.0 | 8.7 |
80–90 | 4.1 | 1.091 | 4.5 | 3 |
Total zonal flux (lm) | 150 | 100% |
Zonal Angle
| Flux Percentage | Target Flux |
---|---|---|
0-10 | 3 | 0.6 |
10-20 | 8.7 | 1.9 |
20-30 | 13.3 | 3.5 |
30-40 | 16.3 | 5.8 |
40-50 | 17.4 | 9.5 |
50-60 | 16.3 | 16.8 |
60-70 | 13.3 | 34.2 |
70-80 | 8.7 | 27.7 |
80-90 | 3 | 0 |
Zonal Angle
| Flux Percentage | Target Flux |
---|---|---|
0-10 | 3 | 2 |
10-20 | 8.7 | 5.6 |
20-30 | 13.3 | 8.8 |
30-40 | 16.3 | 11.5 |
40-50 | 17.4 | 14.9 |
50-60 | 16.3 | 17.9 |
60-70 | 13.3 | 23.8 |
70-80 | 8.7 | 15.5 |
80-90 | 3 | 0 |
Type A | R3 Road Surface | W1 Road Surface | Type B | R3 Road Surface | W1 Road Surface | ||||
---|---|---|---|---|---|---|---|---|---|
Observer | ILM | Observer | ILM | Observer | ILM | Observer | ILM | ||
Lavg(nit) | 1.27 | 1.18 | 3.45 | 3.16 | Lavg(nit) | 1.2 | 1.12 | 3.05 | 2.73 |
Uo≧0.4 | 0.52 | 0.53 | 0.31 | 0.3 | Uo≧0.4 | 0.78 | 0.77 | 0.64 | 0.52 |
UL≦0.6 | 0.53 | 0.58 | 0.37 | 0.44 | UL≦0.6 | 0.94 | 0.8 | 0.66 | 0.77 |
Eavg(lux) | 7.62 | Eavg(lux) | 8.71 | ||||||
UE≧0.5 | 0.877 | UE≧0.5 | 0.583 | ||||||
(a) | (b) |
ILM/Obs. | Type A Lens | Type B Lens | ||||
---|---|---|---|---|---|---|
R3 Road Surface | W1 Road Surface | Average | R3 Road Surface | W1 Road Surface | Average | |
Lavg(nit) | 0.929 | 0.916 | 0.923 | 0.933 | 0.895 | 0.914 |
Uo | 1.019 | 0.968 | 0.993 | 0.987 | 0.813 | 0.900 |
UL | 1.094 | 1.189 | 1.142 | 0.851 | 1.167 | 1.009 |
Road Surface | Wet | Dry |
---|---|---|
Average Luminance(nit) | 1.2–1.31 | 1.4–1.51 |
Luminance Uniformity(Lmin/Lavg) | 0.35-0.48 | 0.78–0.82 |
September | Sect. 3 of Gaotie South Road | Sect. 5 of Gaotie South Road | ||
---|---|---|---|---|
High Level | Low Level | High Level | Low Level | |
Average | 0.798 | 0.631 | 0.781 | 0.608 |
Stand deviation (individual) | 0.039638646 | 0.25896911 | 0.033194712 | 0.272890902 |
Stand deviation (month) | 0.185251481 | 0.194385356 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-H.; Hsiao, C.-Y.; Gu, J.-C.; Liu, K.-Y.; Yan, S.-F.; Chiu, C.H.; Ho, M.C. HCL Control Strategy for an Adaptive Roadway Lighting Distribution. Appl. Sci. 2021, 11, 9960. https://doi.org/10.3390/app11219960
Liu C-H, Hsiao C-Y, Gu J-C, Liu K-Y, Yan S-F, Chiu CH, Ho MC. HCL Control Strategy for an Adaptive Roadway Lighting Distribution. Applied Sciences. 2021; 11(21):9960. https://doi.org/10.3390/app11219960
Chicago/Turabian StyleLiu, Chun-Hsi, Chun-Yu Hsiao, Jyh-Cherng Gu, Kuan-Yi Liu, Shu-Fen Yan, Chien Hua Chiu, and Min Che Ho. 2021. "HCL Control Strategy for an Adaptive Roadway Lighting Distribution" Applied Sciences 11, no. 21: 9960. https://doi.org/10.3390/app11219960
APA StyleLiu, C.-H., Hsiao, C.-Y., Gu, J.-C., Liu, K.-Y., Yan, S.-F., Chiu, C. H., & Ho, M. C. (2021). HCL Control Strategy for an Adaptive Roadway Lighting Distribution. Applied Sciences, 11(21), 9960. https://doi.org/10.3390/app11219960