Fragility Curves for Material Characteristics and Damage Index for Brick Masonry Exposed to Freeze–Thaw Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Part
- Cooling phase in the interval of 20–30 min with a decreasing temperature of +20 ± 3 °C to −15 ± 3 °C;
- Freezing phase in the interval of 90–100 min with a temperature of −15 ± 3 °C (duration of the first two phases must be 120 min);
- Thawing phase lasting 15–20 min with an increasing temperature of −15 ± 3 °C to +20 ± 3 °C;
- Spraying phase lasting 2 min with a water temperature of 18–25 °C;
- Draining phase lasting 2 min.
2.2. Analytical Part
3. Results
3.1. General Model
3.1.1. Regression Curves
- Number of F/T cycles, described by a uniform variable;
- Type of mortar, described by a discrete variable, with 0 for lime mortar and 1 for lime mortar with blastfurnace slag additive.
3.1.2. Fragility Curves for Ductility
3.2. Damage Model
3.2.1. Regression Curves
3.2.2. Fragility Curves for Damage Index
4. Discussion
4.1. General Discussion
4.2. Use Case
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kokko, P.; Pentti, M. A New Freeze-thaw Method for Mortars Used in Nordic Climates. In Proceedings of the International RILEM Workshop on Repair Mortars for Historic Masonry, Delft, The Netherlands, 26–28 January 2005; pp. 187–195. [Google Scholar]
- Powers, T.C. A working hypothesis for further studies of frost resistance. J. Am. Concr. Inst. 1945, 16, 245–272. [Google Scholar]
- Fagerlund, G. Internal Frost Attack—State of the Art. In Proceedings of the RILEM Workshop Resistance of Concrete to Freezing and Thawing with or without De-Icing Chemicals, Essen, Germany, 22–23 September 1997; Setzer, M.J., Auberg, R., Eds.; RILEM: London, UK, 1997; pp. 321–338. [Google Scholar]
- Powers, T.C.; Helmuth, R.A. Theory of volume changes in hardened Portland—Cement paste during freezing. In Proceedings of the Highway Research Board of the 32nd Annual Meeting, Washington, DC, USA, 13–16 January 1953; Volume 32, pp. 285–297. [Google Scholar]
- Perrin, B.; Vu, N.A.; Multon, S.; Voland, T.; Ducroquetz, C. Mechanical behaviour of fired clay materials subjected to freeze–thaw cycles. Constr. Build. Mater. 2011, 25, 1056–1064. [Google Scholar] [CrossRef]
- Stupart, A.W. A survey of literature relating to frost damage in bricks. Masonry Int. 1989, 3, 42–50. [Google Scholar]
- Litvan, G.G. Freeze–Thaw Durability of Porous Building Materials. In Durability of Building Materials and Components; ASTM STP 691; Sereda, P.J., Litvan, G.G., Eds.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1980; pp. 455–463. [Google Scholar]
- Arizzi, A.; Viles, H.; Cultrone, G. Experimental testing of the durability of limebased mortars used for rendering historic buildings. Constr. Build. Mater. 2012, 28, 807–818. [Google Scholar] [CrossRef]
- Uranjek, M.; Bokan-Bosiljkov, V. Influence of freeze-thaw cycles on mechanical properties of historical brick masonry. Constr. Build. Mater. 2015, 84, 416–428. [Google Scholar] [CrossRef]
- Kralj, B.; Pande, G.N.; Middleton, J. On the mechanics of frost damage to brick masonry. Comput. Struct. 1991, 41, 53–66. [Google Scholar] [CrossRef]
- Lindstrom, M. Small Data—The Tiny Clues that Uncover Huge Trends; St. Martin Press: New York, NY, USA, 2016. [Google Scholar]
- Griffin, I. Pozzolanas as Additives for Grouts: An investigation of their working properties and performance charac-teristics. Stud. Conserv. 2004, 49, 23–34. [Google Scholar] [CrossRef]
- Virgalitte, S.J.; Luther, M.D.; Rose, J.H.; Mather, B. Ground Granulated Blast Furnace Slag as a Cementitious Constituent in Concrete; ACI Report 233R-95; American Concrete Institute: Farmington Hills, MI, USA, 1995; p. 18. [Google Scholar]
- Cizer, O.; Van Balen, K.; Van Gemert, D. Competition Between Hydration and Carbonation in Hydraulic Lime and Lime-Pozzolana Mortars. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2010; Volume 133, pp. 241–246. [Google Scholar]
- Cizer, O.; Van Balen, K.; Van Gemert, D. A Comparative Study of Hardening Reactions, Porosity and Mechanical Properties of Cement-Lime Mortars. In Proceedings of the 8th International Masonry Conference, Dresden, Germany, 4–7 July 2010; International Masonry Society: Shermanbury, UK, 2010; pp. 1133–1142. [Google Scholar]
- Cazalla, O.; Rodriguez-Navarro, C.; Sebastian, E.; Cultrone, G.; de la Torre, M.J. Ageing of Lime Putty: Effects on Traditional Lime Mortar Carbonation. J. Am. Ceram. Soc. 2000, 83, 1070–1076. [Google Scholar] [CrossRef]
- Hewlett, P.C. Lea’s Chemistry of Cement and Concrete, 4th ed; Oxford Butterworth-Heinemann: Oxford, UK, 2004; p. 1057. [Google Scholar]
- Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulpu, E.; Anagnostopoulou, S. Strength development and lime reaction in mortars for repairing historic masonries. Cem. Concr. Compos. 2005, 27, 289–294. [Google Scholar] [CrossRef]
- Elert, K.; Rodriguez-Navarro, C.; Pardo, E.S.; Hansen, E.; Cazalla, O. Lime Mortars for the Conservation of Historic Buildings. Stud. Conserv. 2002, 47, 62–75. [Google Scholar]
- SIST EN 772-1:2002. Methods of Testing for Masonry Units—Part 1: Determination of Compressive Strength; Institute for Standardization: Ljubljana, Slovenia, 2002; p. 11. [Google Scholar]
- Grabec, I.; Sachse, W. Synergetics of Measurement, Prediction and Control; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Perus, I.; Poljansek, K.; Fajfar, P. Flexural deformation capacity of rectangular RC columns determined by the CAE method. Earthq. Eng. Struct. Dyn. 2006, 12, 1453–1470. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar]
- Iman, R.L.; Helton, J.C.; Campbell, J.E. An approach to sensitivity analysis of computer models, Part 1. Introduction, input variable selection and preliminary variable assessment. J. Qual. Technol. 1981, 13, 174–183. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Elwood, K.J.; Haukaas, T. Classification and seismic safety evaluation of existing reinforced concrete columns. J. Struct. Eng. 2007, 133, 1316–1330. [Google Scholar] [CrossRef]
- Perus, I.; Terčelj, M.; Kugler, G. Determination of scrap/supply probability curves for the mechanical properties of aluminium alloys in hot extrusion using a neural network-like approach. Expert Syst. Appl. 2012, 39, 5634–5640. [Google Scholar] [CrossRef]
- Gardoni, P.; Der Kiureghian, M.A.; Mosalam, K.M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. J. Eng. Mech. 2002, 128, 1024–1038. [Google Scholar] [CrossRef]
- Sarangapani, G.; Venkatarama Reddy, B.V.; Jagadish, K.S. Brick-Mortar Bond and Masonry Compressive Strength. J. Mater. Civ. Eng. 2005, 17, 229–237. [Google Scholar] [CrossRef]
- Bosiljkov, V. Experimental and Numerical Research on the Influence of the Modified Mortars on the Mechanical Properties of the Brick Masonry. Ph.D. Thesis, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia, 2000; p. 314. (In Slovenian). [Google Scholar]
- Chen, F.; Qiao, P. Probabilistic damage modeling and service-life prediction of concrete under freeze–thaw action. Mater. Struct. 2014, 48, 2697–2711. [Google Scholar] [CrossRef]
- Lemaitre, J.; Desmorat, R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
fIw (MPa) | uIw (mm) | fwmax (MPa) | uwmax (mm) | Ew (MPa) | Gw (MPa) | |
---|---|---|---|---|---|---|
M1-normal conditions | ||||||
Average | 2.06 | 0.25 | 6.18 | 1.22 | 1428 | 554 |
Median | 1.95 | 0.24 | 6.01 | 1.23 | 1395 | 560 |
Stdev | 0.34 | 0.04 | 0.49 | 0.24 | 150 | 155 |
CoV | 16% | 15% | 8% | 20% | 10% | 28% |
M1-50 F/T cycles | ||||||
Average | 3.10 | 0.35 | 6.73 | 1.09 | 1730 | 632 |
Median | 2.80 | 0.35 | 7.09 | 1.16 | 1799 | 640 |
Stdev | 0.55 | 0.07 | 0.78 | 0.14 | 123 | 69 |
CoV | 18% | 19% | 12% | 13% | 7% | 11% |
M1-150 F/T cycles | ||||||
Average | 5.32 | 0.73 | 7.55 | 1.18 | 1608 | 700 |
Median | 5.37 | 0.72 | 7.07 | 1.20 | 1533 | 674 |
Stdev | 0.90 | 0.06 | 1.52 | 0.09 | 131 | 68 |
CoV | 17% | 8% | 20% | 7% | 8% | 10% |
fIw (MPa) | uIw (mm) | fwmax (MPa) | uwmax (mm) | Ew (MPa) | Gw (MPa) | |
---|---|---|---|---|---|---|
M3a-normal conditions | ||||||
Average | 4.12 | 0.18 | 11.89 | 0.75 | 3723 | 1432 |
Median | 3.91 | 0.18 | 12.62 | 0.73 | 3677 | 1335 |
Stdev | 0.68 | 0.02 | 1.56 | 0.06 | 534 | 261 |
CoV | 16% | 11% | 13% | 8% | 14% | 18% |
M3a-50 F/T cycles | ||||||
Average | 3.74 | 0.16 | 11.08 | 0.92 | 3852 | 1380 |
Median | 3.91 | 0.15 | 10.98 | 0.84 | 3745 | 1471 |
Stdev | 0.43 | 0.02 | 0.67 | 0.18 | 323 | 466 |
CoV | 12% | 9% | 6% | 20% | 8% | 34% |
M3a-150 F/T cycles | ||||||
Average | 4.86 | 0.31 | 10.74 | 0.96 | 2817 | 1115 |
Median | 4.80 | 0.28 | 10.34 | 0.82 | 2795 | 1151 |
Stdev | 1.47 | 0.11 | 0.49 | 0.22 | 112 | 211 |
CoV | 30% | 34% | 5% | 22% | 4% | 19% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uranjek, M.; Skrinar, M.; Imamović, D.; Peruš, I. Fragility Curves for Material Characteristics and Damage Index for Brick Masonry Exposed to Freeze–Thaw Action. Appl. Sci. 2021, 11, 10027. https://doi.org/10.3390/app112110027
Uranjek M, Skrinar M, Imamović D, Peruš I. Fragility Curves for Material Characteristics and Damage Index for Brick Masonry Exposed to Freeze–Thaw Action. Applied Sciences. 2021; 11(21):10027. https://doi.org/10.3390/app112110027
Chicago/Turabian StyleUranjek, Mojmir, Matjaž Skrinar, Denis Imamović, and Iztok Peruš. 2021. "Fragility Curves for Material Characteristics and Damage Index for Brick Masonry Exposed to Freeze–Thaw Action" Applied Sciences 11, no. 21: 10027. https://doi.org/10.3390/app112110027
APA StyleUranjek, M., Skrinar, M., Imamović, D., & Peruš, I. (2021). Fragility Curves for Material Characteristics and Damage Index for Brick Masonry Exposed to Freeze–Thaw Action. Applied Sciences, 11(21), 10027. https://doi.org/10.3390/app112110027