Recurrent Neural Network Based Short-Term Load Forecast with Spline Bases and Real-Time Adaptation
Abstract
:1. Introduction
2. Methodology
2.1. Apparent Temperature
2.2. Spline Basis Functions
2.3. Semi-Parametric Model
- It is observed that there are patterns depicted by the intra-daily, intra-weekly, peak and off-peak effects to be modeled by the multi-resolution and cubic B-spline bases.
- It is clear that the temperature significantly affects the load pattern. The weighted average of the temperature at different periods each day, and similarly the daily highest and lowest and the weighted average of temperatures in the different regions, are included as important predictors.
- The interaction effects of the period with the day type within each week are also crucial.
- 1
- intra-weekly effect
- 2
- intra-daily effect
- 3
- interaction effect among the intra-daily and intra-weekly
- 4
- apparent temperature effect
2.4. Model Bases Selection
2.5. Temperature Forecast Adjustment
- Calibration of temperature forecasts
- 2.
- Refined temperature forecasts
- 3.
- Transformed temperature forecasts
2.6. Recurrent Neural Network with Selected Bases
- General Structure of RNN
- 2.
- Configuration Architecture
2.7. Real-Time Adapted Forecasting
- Load Forecasts Interpolation
- 2.
- Adaptive Load Forecasting
- 3.
- Exponentially Weighted Average
3. Test Results
3.1. Training Data Selection
3.2. Comparison of Test Results Obtained from the Semi-Parametric Model and the RNN Model
3.3. Forecasts with Temperature Calibration
3.4. Real-Time Forecast Performance
3.5. Comparison of ANN, MIX, SPM and RNN Model Performance
3.6. Performances of the (D + 2) to (D + 7) Day Forecasting Accuracies of the RNN Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Spline Bases Functions
Appendix A.1. Multi-Resolution Bases
Appendix A.2. Cubic B-Spline Bases
Appendix B. Semi-Parametric Model
References
- Gross, G.; Galiana, F.D. Short-term load forecasting. Proc. IEEE 1987, 75, 1558–1573. [Google Scholar] [CrossRef]
- Fan, S.; Hyndman, R.J. Short-term load forecasting based on a semi-parametric additive model. IEEE Trans. Power Syst. 2011, 27, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Juberias, G.; Yunta, R.; Moreno, J.G.; Mendivil, C.A. A new ARIMA model for hourly load forecasting. In Proceedings of the 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333), New Orleans, LA, USA, 11–16 April 1999; pp. 314–319. [Google Scholar]
- Chen, Y.; Koch, T.; Xu, X. Regularized Partially Functional Autoregressive Model. 2019. Available online: https://ssrn.com/abstract=3482262 (accessed on 11 November 2020).
- Vagropoulos, S.I.; Kardakos, E.G.; Simoglou, C.K.; Bakirtzis, A.G.; Catalão, J.P. Artificial neural network-based methodology for short-term electric load scenario generation. In Proceedings of the 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP), Porto, Portugal, 11–16 September 2015; 2015; Volume 12, pp. 1–6. [Google Scholar]
- Kazeminejad, M.; Dehghan, M.; Motamadinejad, M.B.; Rastegar, H. A new short term load forecasting using multilayer perceptron. In Proceedings of the 2006 International Conference on Information and Automation, Colombo, Sri Lanka, 15–19 May 2006; pp. 284–288. [Google Scholar]
- Humeau, S.; Wijaya, T.K.; Vasirani, M.; Aberer, K. Electricity load forecasting for residential customers: Exploiting aggregation and correlation between households. In Proceedings of the 2013 Sustainable Internet and ICT for Sustainability (SustainIT), Palermo, Italy, 30–31 October 2013; pp. 1–6. [Google Scholar]
- Wang, Q.L.; Cheng, X. Application of the generalized regression neural network in short-term load forecasting. In Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and Networks, Xi’an, China, 27–29 May 2011; pp. 147–149. [Google Scholar]
- Rodrigues, F.; Cardeira, C.; Calado, J.M.F. The daily and hourly energy consumption and load forecasting using artificial neural network method: A case study using a set of 93 households in Portugal. Energy Procedia 2014, 62, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Lusis, P.; Khalilpour, K.R.; Andrew, L.; Liebman, A. Short-term residential load forecasting: Impact of calendar effects and forecast granularity. Appl. Energy 2017, 205, 654–669. [Google Scholar] [CrossRef]
- Kuster, C.; Rezgui, Y.; Mourshed, M. Electrical load forecasting models: A critical systematic review. Sustain. Cities Soc. 2017, 35, 257–270. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Maiorino, E.; Kampffmeyer, M.C.; Rizzi, A.; Jenssen, R. Recurrent Neural Networks for Short-Term Load Forecasting: An Overview and Comparative Analysis; Springer: New York, NY, USA, 2017. [Google Scholar]
- Vermaak, J.; Botha, E.C. Recurrent neural networks for short-term load forecasting. IEEE Trans. Power Syst. 1998, 13, 126–132. [Google Scholar] [CrossRef]
- Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting-A novel pooling deep RNN. IEEE Trans. Smart Grid 2017, 9, 5271–5280. [Google Scholar] [CrossRef]
- Lai, C.S.; Yang, Y.; Pan, K.; Zhang, J.; Yuan, H.L.H.L.; Ng, W.W.; Gao, Y.; Zhao, Z.; Wang, T.; Shahidehpour, M.; et al. Multi-view neural network ensemble for short and mid-term load forecasting. IEEE Trans. Power Syst. 2020. [Google Scholar] [CrossRef]
- Zheng, H.; Yuan, J.; Chen, L. Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation. Energies 2017, 10, 1168. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H. The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, S.; Huang, H.C. Resolution adaptive fixed rank kriging. Technometrics 2018, 60, 198–208. [Google Scholar] [CrossRef]
- Hyman, J.M. Accurate monotonicity preserving cubic interpolation. SIAM J. Sci. Stat. Comput. 1983, 4, 645–654. [Google Scholar] [CrossRef]
- Steadman, R.G. A universal scale of apparent temperature. J. Appl. Meteorol. Climatol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized Additive Models; Chapman and Hall/CRC: London, UK, 1990. [Google Scholar]
- Hoerl, A.E. Applications of Ridge Analysis to regression Problems. Chem. Eng. Prog. 1962, 58, 54–59. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Botchkarev, A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology. arXiv 2018, arXiv:1809.03006. [Google Scholar]
- Hsu, Y.Y.; Tung, T.T.; Yeh, H.C.; Lu, C.N. Two-stage artificial network model for short-term load forecasting. IFAC-PapersOnLine 2018, 51, 678–683. [Google Scholar] [CrossRef]
Time Steps | Units | Layers | (D + 1)-Day MAPE | (D + 1)-Day Max of APE at 95% | Time Steps | Units | Layers | (D + 1)-Day MAPE | (D + 1)-Day Max of APE at 95% |
---|---|---|---|---|---|---|---|---|---|
4 | 14 | 3 | 1.862 | 4.188 | 8 | 14 | 3 | 1.863 | 3.993 |
4 | 1.876 | 4.383 | 4 | 1.872 | 4.162 | ||||
5 | 1.867 | 4.381 | 5 | 1.883 | 4.262 | ||||
4 | 21 | 3 | 1.876 | 4.318 | 8 | 21 | 3 | 1.896 | 4.321 |
4 | 1.906 | 4.271 | 3 | 1.863 | 3.993 | ||||
5 | 1.904 | 4.220 | 4 | 1.872 | 4.162 | ||||
4 | 28 | 3 | 1.900 | 4.354 | 8 | 28 | 3 | 1.916 | 4.287 |
4 | 1.882 | 4.336 | 4 | 1.908 | 4.405 | ||||
5 | 1.920 | 4.171 | 5 | 1.925 | 4.349 |
SPM | RNN | Daily Load | |||||
---|---|---|---|---|---|---|---|
Year | MAE | RMSE | MAPE | MAE | RMSE | MAPE | Average |
2018 | 605.01 | 792.93 | 2.31 | 530.2 | 719.98 | 2.03 | 26,382.82 |
2019 | 466.39 | 632.22 | 1.76 | 448.99 | 601.02 | 1.7 | 26,441.99 |
SPM | RNN | |||||
---|---|---|---|---|---|---|
Month | Historical | Forecasted | Calibrated | Historical | Forecasted | Calibrated |
201801 | 2.6 | 2.64 | 2.6 | 1.62 | 1.43 | 1.41 |
201802 | 4.13 | 4.13 | 4.09 | 3.57 | 3.64 | 3.64 |
201803 | 2.52 | 2.16 | 2.25 | 1.88 | 1.71 | 1.68 |
201804 | 2.51 | 2.23 | 2.45 | 2.14 | 2.92 | 2.40 |
201805 | 3.58 | 3.32 | 3.77 | 2.32 | 2.68 | 2.41 |
201806 | 2.23 | 2.38 | 2.15 | 2.20 | 3.77 | 3.20 |
201807 | 1.43 | 2.00 | 1.87 | 1.49 | 2.95 | 2.64 |
201808 | 1.86 | 2.96 | 2.00 | 1.98 | 4.49 | 3.47 |
201809 | 2.5 | 2.85 | 2.33 | 2.89 | 3.87 | 2.57 |
201810 | 1.87 | 2.53 | 2.2 | 1.81 | 2.51 | 2.11 |
201811 | 1.57 | 1.54 | 1.7 | 1.62 | 2.01 | 1.75 |
201812 | 1.35 | 1.39 | 1.32 | 1.40 | 1.52 | 1.43 |
Average | 2.32 | 2.48 | 2.37 | 2.03 | 2.74 | 2.34 |
201901 | 2.00 | 2.06 | 2.05 | 1.98 | 2.14 | 2.09 |
201902 | 1.83 | 1.84 | 1.87 | 1.88 | 2.05 | 1.97 |
201903 | 1.26 | 1.26 | 1.48 | 1.29 | 1.34 | 1.31 |
201904 | 2.10 | 2.52 | 2.63 | 1.94 | 2.6 | 2.38 |
201905 | 2.35 | 2.85 | 2.49 | 2.32 | 3.12 | 2.73 |
201906 | 2.02 | 2.98 | 3.12 | 1.57 | 3.02 | 2.57 |
201907 | 1.30 | 1.95 | 1.89 | 1.5 | 2.09 | 2.00 |
201908 | 1.91 | 2.55 | 2.6 | 1.9 | 2.87 | 2.80 |
201909 | 2.24 | 2.61 | 2.16 | 2.06 | 2.76 | 2.26 |
201910 | 1.21 | 1.77 | 1.88 | 1.32 | 2.04 | 1.72 |
201911 | 1.26 | 1.41 | 1.47 | 1.16 | 1.49 | 1.45 |
201912 | 1.71 | 1.73 | 1.73 | 1.56 | 1.64 | 1.60 |
Average | 1.76 | 2.13 | 2.11 | 1.7 | 2.26 | 2.08 |
Month | 15 Min | 30 Min | 60 Min | 120 Min | 180 Min | 360 Min |
---|---|---|---|---|---|---|
201801 | 0.488 | 0.49 | 0.494 | 0.502 | 0.509 | 0.529 |
201802 | 0.468 | 0.469 | 0.471 | 0.477 | 0.483 | 0.499 |
201803 | 0.481 | 0.482 | 0.485 | 0.495 | 0.506 | 0.528 |
201804 | 0.488 | 0.493 | 0.502 | 0.515 | 0.526 | 0.55 |
201805 | 0.47 | 0.475 | 0.483 | 0.496 | 0.506 | 0.554 |
201806 | 0.456 | 0.459 | 0.466 | 0.477 | 0.488 | 0.542 |
201807 | 0.434 | 0.438 | 0.445 | 0.457 | 0.465 | 0.496 |
201808 | 0.447 | 0.451 | 0.457 | 0.465 | 0.474 | 0.513 |
201809 | 0.485 | 0.486 | 0.492 | 0.503 | 0.513 | 0.557 |
201810 | 0.525 | 0.529 | 0.535 | 0.546 | 0.558 | 0.582 |
201811 | 0.473 | 0.475 | 0.478 | 0.484 | 0.493 | 0.515 |
201812 | 0.452 | 0.453 | 0.455 | 0.460 | 0.470 | 0.490 |
Average | 0.473 | 0.475 | 0.481 | 0.490 | 0.500 | 0.530 |
ANN | MIX | SPM | RNN | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | Daily | Peak | Nadir | Daily | Peak | Nadir | Daily | Peak | Nadir | Daily | Peak | Nadir |
201801 | 1.77 | 1.33 | 2.30 | 1.95 | 1.61 | 2.78 | 2.60 | 3.18 | 2.48 | 1.41 | 1.21 | 0.96 |
201802 | 2.19 | 2.63 | 2.21 | 2.38 | 2.82 | 2.43 | 4.09 | 4.51 | 3.18 | 3.64 | 3.81 | 2.94 |
201803 | 2.40 | 2.18 | 2.88 | 1.98 | 2.05 | 2.65 | 2.25 | 3.20 | 1.79 | 1.68 | 1.75 | 1.81 |
201804 | 2.78 | 3.01 | 2.59 | 2.12 | 2.33 | 2.21 | 2.45 | 2.93 | 2.23 | 2.40 | 2.31 | 2.33 |
201805 | 2.85 | 2.92 | 3.25 | 2.75 | 3.26 | 2.35 | 3.77 | 4.58 | 3.39 | 2.41 | 2.79 | 2.32 |
201806 | 7.25 | 6.48 | 8.29 | 7.59 | 6.60 | 9.02 | 2.15 | 2.30 | 2.87 | 3.20 | 3.04 | 2.96 |
201807 | 2.09 | 2.07 | 2.09 | 2.38 | 2.51 | 2.04 | 1.87 | 2.15 | 1.62 | 2.64 | 2.37 | 2.55 |
201808 | 1.89 | 1.91 | 1.68 | 2.13 | 2.59 | 1.78 | 2.00 | 2.05 | 1.80 | 3.47 | 3.30 | 3.73 |
201809 | 2.67 | 2.46 | 2.70 | 3.29 | 3.14 | 3.06 | 2.33 | 1.61 | 2.23 | 2.57 | 1.96 | 2.94 |
201810 | 1.94 | 2.02 | 1.68 | 1.31 | 1.41 | 1.26 | 2.20 | 1.96 | 1.94 | 2.11 | 1.81 | 2.28 |
201811 | 3.31 | 3.78 | 3.23 | 1.57 | 2.24 | 1.54 | 1.70 | 2.45 | 1.59 | 1.75 | 1.74 | 2.13 |
201812 | 1.49 | 1.47 | 1.16 | 1.25 | 1.19 | 0.79 | 1.32 | 1.06 | 1.17 | 1.43 | 1.24 | 1.60 |
Average | 2.72 | 2.68 | 2.86 | 2.54 | 2.63 | 2.64 | 2.37 | 2.66 | 2.18 | 2.34 | 2.23 | 2.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, T.-L.; Jiang, D.-S.; Huang, S.-Y.; Hsu, Y.-Y.; Yeh, H.-C.; Huang, M.-N.L.; Lu, C.-N. Recurrent Neural Network Based Short-Term Load Forecast with Spline Bases and Real-Time Adaptation. Appl. Sci. 2021, 11, 5930. https://doi.org/10.3390/app11135930
Yuan T-L, Jiang D-S, Huang S-Y, Hsu Y-Y, Yeh H-C, Huang M-NL, Lu C-N. Recurrent Neural Network Based Short-Term Load Forecast with Spline Bases and Real-Time Adaptation. Applied Sciences. 2021; 11(13):5930. https://doi.org/10.3390/app11135930
Chicago/Turabian StyleYuan, Tzu-Lun, Dian-Sheng Jiang, Shih-Yun Huang, Yuan-Yu Hsu, Hung-Chih Yeh, Mong-Na Lo Huang, and Chan-Nan Lu. 2021. "Recurrent Neural Network Based Short-Term Load Forecast with Spline Bases and Real-Time Adaptation" Applied Sciences 11, no. 13: 5930. https://doi.org/10.3390/app11135930
APA StyleYuan, T.-L., Jiang, D.-S., Huang, S.-Y., Hsu, Y.-Y., Yeh, H.-C., Huang, M.-N. L., & Lu, C.-N. (2021). Recurrent Neural Network Based Short-Term Load Forecast with Spline Bases and Real-Time Adaptation. Applied Sciences, 11(13), 5930. https://doi.org/10.3390/app11135930