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Abstract: Accurate load forecasting is an important issue for the reliable and efficient operation of
a power system. This study presents a hybrid algorithm that combines similar days (SD) selection,
empirical mode decomposition (EMD), and long short-term memory (LSTM) neural networks to
construct a prediction model (i.e., SD-EMD-LSTM) for short-term load forecasting. The extreme
gradient boosting-based weighted k-means algorithm is used to evaluate the similarity between
the forecasting and historical days. The EMD method is employed to decompose the SD load to
several intrinsic mode functions (IMFs) and residual. Separated LSTM neural networks were also
employed to forecast each IMF and residual. Lastly, the forecasting values from each LSTM model
were reconstructed. Numerical testing demonstrates that the SD-EMD-LSTM method can accurately
forecast the electric load.

Keywords: long short-term memory neural networks; similar day; extreme gradient boosting;
k-means; empirical mode decomposition; short-term load forecasting

1. Introduction

Short-term load forecasting (STLF), which ranges from one hour to one week ahead, plays
an important role in the control, power security, market operation, and scheduling of reasonable
dispatching plans for smart grids. However, achieving high accuracy is difficult because of the
complicated effects of a variety of attributes on the load.

Over the past few decades, scholars have developed many modus to improve the accuracy of
STLF that can mainly be divided into three methods, namely, traditional, similar day (SD), and artificial
intelligence (AI)-based methods. Traditional methods are based on mathematical models, including
multiple linear regression [1], stochastic time series [2], exponential smoothing [3], and knowledge-based
methods [4]. Traditional methods often perform poorly at nonlinear forecasting, and STLF is a nonlinear
problem. Accordingly, the prediction accuracy of traditional methods is insufficient for STLF.

The SD method is based on the selection of historical days that have similar features to the
forecasted days [5–9]. Mandal et al. [7] selected SDs based on the calculation of the Euclidean norm of
factors between historical and forecasted days. Chen et al. [8] required SDs to have the same weekday
index and similar weather to the forecasted days. Mu [9] applied a weighted average model for the
historical day to determine the influence of most SDs on the forecasted day. However, using this
method solely cannot sufficiently obtain high prediction accuracy. The selection of input variables
plays a crucial role when modelling time series and thus should be treated as a generalization problem.
Arahal [10] proposed a method consists on calculating the difference index for all variables.
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The AI-based methods, such as the artificial neural networks [11–14], support vector
machine [15–18], expert system models [19], fuzzy logistic methods [20], and Bayesian neural
networks [21], are extensively used to handle many forecasting problems. Although wide-ranging
research has been conducted, an accurate STLF remains a challenge due to its non-stationary load data
and long-term dependencies forecasting horizon. Hence, we applied the long short-term memory
(LSTM) [22,23], which is a special type of recurrent neural network (RNN) architecture [24], to solve
the STLF problem. The vanishing gradient point is a problem for RNNs in handling time series; LSTM
cells can address this issue by incorporating memory cells in the hidden layer of RNN. LSTM performs
well in long time horizon forecasting than other artificial intelligence methods based on the past load
data that determine the effect and relationship among time series.

However, two inherent defects exist in neural networks: slow convergence and presence of a local
minimum. After extensively analyzing the structure of neural networks, scholars [25] proposed a
model that combines data decomposition with neural networks to address these two defects. Empirical
Mode Decomposition (EMD) [26–29] can facilitate the determination of the characteristics of the
complex non-linear time series. EMD is based on local characteristics of the signal sequence to
complete the signal decomposition, in other words, the method do not require any base function
pre-defined. Compared with wavelet decomposition, EMD method can be applied in theory to the
decomposition of any type of signal since it has the characteristics of intuitive, direct, posterior and
adaptive. Because it is essentially quite different from wavelet decomposition methods based on the
wavelet basis function. Briefly, The EMD takes advantage of the multi-resolution and overcomes the
difficulty of selecting wavelet basis function in wavelet transformation.

Given the preceding discussion, this study presents a generic framework that combines
extreme gradient boosting (Xgboost) and k-means on SD selection, empirical mode decomposition
(EMD), and LSTM neural networks to forecast short-term load (i.e., SD-EMD-LSTM model).
Simulation experiments that use hourly load data from New England-ISO are conducted to verify the
performance of the proposed STLF framework. We compare the SD-EMD-LSTM model with several
other classical STLF models, and the results demonstrate that the proposed model outperforms the
others in one-day ahead and one-week ahead tests. Moreover, numerical testing confirms that the
proposed SD-EMD-LSTM model is capable of forecasting accuracy, robustness, and stability.

The main contributions of this study are as follows.

1. Although the temperature, humidity, and day type have been extensively used as input features
in STLF, we also recognize that STLF is sensitive to the day-ahead peak load, which has to be
a supplemental input feature to the SD selection and LSTM training processes.

2. Extending from our previous work on data analysis, we independently learned the feature
candidate weights for the SD selection framework based on the Xgboost algorithm to overcome the
dimensionality limitation in clustering. Thus, the proposed Xgboost-based k-means framework
can deal with the SD selection tasks beyond pure clustering.

3. Numerical testing demonstrates that data decomposition-based LSTM neural networks can
outperform most of the well-established forecasting methods in the longer-horizon load
forecasting problem.

The rest of this paper is organized as follows. Section 2 discusses the factors that affect electricity
forecasting, including temperature, day-type, and day-ahead peak load factors. Section 3 presents
a generic SD selection framework that combines the Xgboost and k-means algorithms. Section 4 presents
the forecasting framework, which combines the EMD and LSTM neural networks. Section 5 presents the
experimental design and numerical test results. Lastly, Section 6 provides the conclusions of this study.
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2. Data Analysis

The analysis of the relationship between the load data and external variables that affect the electric
load is necessary to achieve high forecasting accuracy. This analysis is based on the electricity load
data (provided by ISO New England) measured at one-hour intervals from 2003 to 2016. This section
describes the major load-affecting factors, including temperature and day-type index. We also analyze
the relationship between the daily and day-ahead peak loads.

Evidently, temperature changes are the primary cause of electricity load changes. In particular, the
temperature variation range often determines the variation range of the electricity load. The variation
in the interval-valued load with respect to the interval-valued temperature is shown in Figure 1.
In the summer season, the higher the temperature is, the larger the electricity load value becomes
(see Figure 1a). That is, a positive correlation exists between the load and temperature. By contrast,
this correlation becomes negative in the winter season (Figure 1b). The preceding analysis indicates
the necessity of discussing the effect of temperature on electricity load from one season to another.

Different day-types have different daily load curves, and the load of different day-types, such as
weekends, holidays, and working days, are also different. The load of a working day is often higher
than that on the weekend due to the decrease in industrial load on weekends. Accordingly, load on
Saturdays is lower compared with those on other days (see Figure 2). Mondays and Tuesdays typically
have the largest energy consumption over the week. Evidently, non-working days have considerably
low energy consumption. Therefore, day-types are an important feature that cannot be ignored.

(a) (b)

Figure 1. The daily interval-valued load and temperature: (a) from 11 April to 21 Octorber 2015;
(b) from 22 Octorber 2015 to 10 April 2016.

(a) (b) (c)

Figure 2. The daily peak load has different values depending on the day-type: (a) from 4 to 10 April 2016.
(b) from 12 to 18 October 2016. (c) from 20 to 26 July 2014.
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Although we have already identified several features that affect load forecasting, prediction errors
may still be large during peak hours in the STLF process. Thus, we suppose that the day-ahead peak load
is an important feature for forecasting. The Figure 3 is a scatter plot between the day-ahead peak load
and daily load from 1 March 2003 to 31 October 2016. We determine that these two variables are closely
related with the correlation coefficient = 0.8754. This result confirms the necessity of one day-ahead
peak load to be a supplemental input feature to the SD selection and LSTM training processes.

Figure 3. Correlations between daily load and one day-ahead peak load.

Precipitation and wind speed also have a bearing on the electricity load. Load on a sunny day is
significantly higher than that on a rainy day. Therefore, improving the prediction accuracy is possible
by selecting SD and maximizing the historical and features data.

3. Similar Day Selection: Improved K-Means with Extreme Gradient Boosting

If exogenous features, such as temperature, are included, then the traditional load forecasting
model could lead to slow convergence and poor prediction accuracy. Thus, we select the SD load as
the input data to improve the prediction power.

Clustering based on the feature values of the data and similar samples gathered in the same
cluster can substantially improve the selection of SDs with the forecasting day. The performance of
the clustering algorithm depends on the distance between records. “It is misleading to calculate the
distance by measuring all attributes equally. The distance between neighbors will be dominated by
the large number of irrelevant attributes, which sometimes leads to the dimensionality curse” [30].
An effective method to overcome this problem is to add a weighted parameter for each feature. Hence,
the more relevant the feature is, the larger the impact of this feature becomes on the clustering results.

This section presents an alternative to SD selection that calculates the weights of the features
using the Xgboost algorithm and integrates the weighted features using the k-means clustering.

3.1. Feature-Weight Learning Algorithm: Extreme Gradient Boosting

Xgboost [31] is an improved algorithm based on the gradient boosting decision tree and can construct
boosted trees efficiently and operate in parallel. The boosted trees in Xgboost are divided into regression
and classification trees. The core of the algorithm is to optimize the value of the objective function.

Unlike the use of feature vectors to calculate the similarity between the forecasting and history
days, gradient boosting constructs the boosted trees to intelligently obtain the feature scores, thereby
indicating the importance of each feature to the training model. The more a feature is used to make key
decisions with boosted trees, the higher its score becomes. The algorithm counts out the importance
by “gain”, “frequency”, and “cover” [32]. Gain is the main reference factor of the importance of a
feature in the tree branches. Frequency, which is a simple version of gain, is the number of a feature
in all constructed trees. Cover is the relative value of a feature observation. In this study the feature
importance is set by “gain”.
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For a single decision tree T, Breiman et al. [33] proposed

w2
`(T) =

J−1

∑
t=1

τ̂2
t (1)

as a score of importance for each predictor feature X`. The decision tree has J − 1 internal nodes, and
partitions the region into two subregions at every node t by the prediction feature X`. The selected
feature is the one that provides maximal estimated improvement τ̂2

t in the squared error risk over
that for a constant fit over the entire region. The squared importance of the feature X` is the sum of
such squared improvement over the J − 1 nodes, for which it was selected as the splitting feature.
The following formula represents the importance calculation over the additive M trees.

w2
`(T) =

1
M

M

∑
m=1

τ̂2
t (Tm) (2)

The importance of a feature depends on whether the prediction performance changes considerably
when such feature is replaced with random noise. Given the data analysis in the previous section,
we take several features as input for the Xgboost algorithm to calculate the feature importance with
the electricity load. We can obtain how each feature contributes to the prediction performance in the
training course of the Xgboost algorithm. Evidently, the electricity load is sensitive to temperature
variables (see Figure 4). Moreover, the supplement features (i.e., day-ahead-peak load) are an important
feature for load forecasting. This conclusion is consistent with the results of the data analysis. We have
now derived the important values of all features, which will be used as a priori knowledge of the
subsequent clustering algorithm.

Figure 4. XGBoost feature importance.

3.2. K-Means Clustering Based on Feature-Weight

K-means, which was first proposed by MacQueen in 1967 [34], is extensively applied in many
fields and sensitive to the selection of the initial cluster centroids. We selected the initial cluster centers
with the maximum distance method to diminish the probability of converging to a local optimum.
This section improves the k-means clustering by computing the initial cluster centers and utilizing the
new distance calculation method. The steps are presented as follows.

1. Given a data set X = {x1, x2, ..., xn} and an integer value K. The data set is normalized as follows:

xi =
xi − xi min

xi max − xi min
(3)
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where xi min and xi max denote the minimum and maximum values, respectively, of each
input factor.

2. The forecasting day is selected as the first center u0
3. The next center uj is selected, where uj is the farthest point from the previously selected cluster

centers {u0, u1, ..., uj−1}. Steps 2 and 3 are repeated until the K centers have been identified.
4. The feature weights are calculated using the Xgboost algorithm. Thereafter, the weights are

attributed to each feature, thereby providing them with different levels of importance. Let wp be
the weight associated with the feature p. The norm is presented as follows.

d(xi, xj) =
√

w1(xi1 − xj1)
2 + · · ·+ wp(xip − xjp)

2 + · · ·+ wn(xin − xjn)
2 (4)

(1) Each data point is assigned to the nearest cluster.

(2) The clusters are updated by recalculating the cluster centroid. The algorithm repeatedly
executes (1) and (2) until convergence is reached.

The key idea in selecting SDs is to determine the attribute weights using the Xgboost algorithm
and calculating the distance between the selected day and the day that relies on measuring different
attributes in different weights. In Figure 5, the horizontal coordinate-axis presents the time (hour),
whereas the longitudinal coordinate-axis presents the load curves. The color that changes from light to
dark means that the electric load values change from large to small. Figure 5a shows the heat map for
the original load data set, where every curve is evidently different in shape. Figure 5b,c are the heat
maps for the original load data after the simple k-means clustering and weight k-means clustering,
respectively. Our proposed Xgboost-k-means method can merge SDs into one cluster more effectively
than the simple k-means algorithm does. Therefore, the SD can be the input data for subsequent
load forecasting.

(a) (b)

Figure 5. Cont.
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(c)

Figure 5. (a) Heat map for load profiles of the original data set; (b) Heat maps for cluster by k-means.
(c) Heat maps for cluster by xgboost-k-means.

4. LSTM with Empirical Mode Decomposition

Neural networks are extensively employed in time series forecasting. However, determining
the structure is difficult and often falls into the local minimum. The EMD method can facilitate the
determination of the characteristics of the complex non-linear or non-stationary time series, i.e., it
can divide the singular values into separated IMFs and determines the general trend of the real time
series. This can effectively reduce the unnecessary interactions among singular values and improve
the performance when a single kernel function is used in forecasting. Thus, this section proposes a
model that combines the EMD and LSTM neural networks for STLF.

4.1. Empirical Mode Decomposition

EMD is a new signal processing method proposed by Huang et al. in 1998 [26]. The original signal
was derived from the data’s characteristics and can be decomposed into the intrinsic mode functions
(IMF) by EMD. Thus, EMD can effectively decompose the singular values and avoid trapping into a
local optimum, thereby improving the performance and robustness of the model.

All IMFs must meet the following conditions:

a. For a set of data sequences, the number of extremal points must be equal to the number of zero
crossings or, at most, differ by one.

b. For any point, the mean value of the envelope of the local maxima and local minima must be zero.

For the original signal x(t), EMD decomposes x(t) through the “sifting” process, which is
described as follows.

1. Identify all the maxima and minima of signal x(t).
2. Through the cubic spline interpolation fitting out the upper envelope u(t) and lower envelope

l(t) of signal x(t) .The mean of the two envelopes can be the average envelope curve m1(t) :

m1(t) =
u(t) + l(t)

2
(5)
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3. Subtraction of m from x(t) to obtain an IMF candidate :

h1(t) = x(t)−m1(t) (6)

4. If h1(t) does not satisfy the two conditions of the IMF, then it should take h1(t) as original signal
and repeat above calculate k times. At this point, h1k(t) could be as shown in Equation (7):

h1k(t) = h1(k−1)(t)−m1k(t) (7)

h1(k−1)(t) and h1k(t) present the signal after shifting k− 1 times and k times,respectively. m1k(t) is
the average envelope of h1k(t)

5. If h1(k−1)(t) satisfies the conditions of the IMF, define h1k(t) as c1(t). Standard deviation is defined
by Equation (8):

Sd =
T

∑
t=0

|h1(k−1)(t)− h1k(k)|
h1k

2(t)

2

∈ (0.2, 0.3) (8)

6. Subtraction of c1(t) from x(t) to obtain new signal r1(t)

r1(t) = x(t)− c1(t) (9)

7. Repeat previous steps 1 to 6 until the rn(t) cannot be decomposed into the IMF. rn(t) is the
residual of the original data x(t). Finally, the original signal x(t) can be presented as a collection
of n components ui(t) (i = 1, 2, ..., n) and a residual rn(t):

x(t) =
n

∑
i=1

ui(t) + rn(t) (10)

The preceding steps show that the EMD method is employed to decompose the SD load at low
and high frequencies, respectively. Figure 6 evidently shows the decomposition of the eight IMF
extractions and residuals. Furthermore, all graphs in Figure 6 are shown in the same scale, thereby
enabling the assessment of the contribution of each extracted IMF.

Figure 6. The original data sequence of the similar daily load and the result of empirical
mode decomposition.
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4.2. Lstm-Based Rnn for Electric Load Forecasting

LSTM was proposed by Hochreiter et al. in 1997 [35] as a type of efficient RNN architecture, and
has been extensively applied in various fields. Moreover, LSTM is a popular time series forecasting
model and can expertly deal with long-term dependencies data.

A. Recurrent Neural Networks (RNNs)

RNNs are designed to operate over the non-linear time-varying problem [24]. The RNN internal
connections enable signals to travel forward and backward, thereby making RNNs substantially
suitable for time series prediction.

RNNs can mine the rules from the time sequences to predict the data that have yet to occur [36,37].
The reason for this characteristic lies in the feedback connections that can facilitate updating the
weights based on the residual in each forward step (Figure 7). The forecasting day load in STLF is
bound up with the SD load. Therefore, if we provided the SD time sequences, then obtaining high
accuracy on the forecasting day becomes possible.

Figure 7. The architecture of RNN.

RNN proves to be suitable for this problem [38]. However, RNNs tend to suffer heavily
from gradient vanishing, which may increase indefinitely and eventually cause the network to
break down. Therefore, simple RNNs may not be the ideal option for forecasting problems with
long-term dependencies.

B. LSTM-Based RNN Forecasting Scheme

LSTM was mainly motivated and designed to overcome the vanishing gradients problem of the
standard RNN when dealing with long term dependencies.This section leads to the long short-term
memory neural network. The LSTM model add the input gate,output gate and forgetting gate to
the neurons in RNN. Such a structure can effectively mitigate the vanishing gradient problem [39].
This makes LSTM an architecture suitable for problems with long term dependencies.

The major innovation of LSTM is its memory cell, which essentially acts as an accumulator of the
state information. First, as shown in Figure 8, the forget gate is applied to decide what information to
get rid of the cell state. A sigmoid function is used to calculate the activation of the forget gate ft.

ft = σ(W f · [ht−1, xt] + b f ) (11)
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The second step is to determine what new information should be stored in the cell state. To start
with, a sigmoid layer named the “input gate layer” decides which information should be update.
Then, a tanh layer creates a vector c̃t of new candidate values should be updated in the next state.

it = σ(Wi · [ht−1, xt] + bi) (12)

c̃t = tanh(Wc · [ht−1, xt] + bc) (13)

Next, we will update the old cell state ct−1 into the new cell state ct. We multiply ct−1 by ft for
throw away the information from old cell. Then we add it ∗ c̃t. There are the new candidate values,
scaled by how much information should be updated to each state value.

ct = ft ∗ ct−1 + it ∗ c̃t (14)

Lastly, we need to decide the output. This has two parts: we run a sigmoid layer as output gate to
filter the cell state firstly. Then, we put the cell state through tanh(·) and multiply it by the output ot to
calculate the desired information.

ot = σ(Wo · [ht−1, xt] + bo) (15)

ht = ot ∗ tanh(ct) (16)

In Equations (11)–(16), Wi, W f , Wc, Wo represents the appropriate weight matrices. The vectors bi,
b f , bc, bo denote the corresponding bias vectors.

This study presents the experiments that apply the separated LSTM neural networks scheme
for the SD load’s IMF and residual forecasting. The training process inputs include the temperature,
day-ahead-peak, humidity, day-type index, precipitation, wind speed, and IMF component of the
SD load. The model framework is shown in Figure 9. In order to further improve the accuracy and
practicability of the prediction model, we establish the architecture based on LSTM, named sequence to
sequence (S2S). Sequence to sequence structure can adjust the length of the input and output sequences
flexibly, that is appropriate to perform different time scales load forecasting.

Figure 8. The architecture of LSTM memory block.
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Figure 9. LSTM neural networks model for hourly load forecasting.

It is obvious that this architecture consists of two parts: encoder and decoder. The encoder aims
to prediction the load we have already known, yet y[M−1] and f[M] present the load’s IMF component
of previous hour and the features of this hour, respectively. f[M] can be expressed as:

f[M] = [Temperature[M] Humidity[M] Day− type[M] Precipitation[M]

Windspeed[M] Day− ahead− peak load[M]]
(17)

Then, the decoder generates an output sequence ŷ =
{

ŷ[M], ŷ[M+1], ..., ŷ[M+n]

}
, that is the

prediction of IMF component of the load for the next n + 1 hours.
Standard backpropagation can be applied to train the network using a gradient based method

called Stochastic Gradient Descent (SGD). Table 1 shows the Mean Absolute Percentage Error (MAPE)
on training and testing datasets for different number of layers and units using the S2S architecture for
data with one-day-ahead forecasting.

It can be seen that the proposed architecture is able to produce very low errors on training dataset.
Further, it is noticed that increasing the capacity of the network by increasing the number of layers
and units only improves error on training dataset. The model performs well on training dataset using
a 2-layer network with 50 units in each layer. However, increasing the capacity of the network does
not improve performance on testing data. In order to improve accuracy on testing data Dropout is
used as regularization methodology.

Table 1. MAPE(%) FOR S2S ARCHITECTURE (one-day-ahead load forecasting).

Layers Units MAPE (Training) MAPE (Testing)

1 5 1.13 1.026
1 20 1.079 1.043
1 50 1.023 1.072
1 100 0.944 1.115
2 5 1.095 1.028
2 20 1.021 1.061
2 50 0.962 1.012
2 100 1.078 1.103
3 5 1.083 1.116
3 20 1.05 1.051
3 50 0.958 1.138
3 100 0.934 1.342
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4.3. The Full Procedure of SD-EMD-LSTM Model

The complete procedure of the proposed SD-EMD-LSTM model is presented as follows and
illustrated in Figure 10.

1. Similar days selection. Calculate the features weight by xgboost method, then combined with
K-means algorithm to determine the similar days cluster.

2. Data decomposition. Take similar days load as input data, and decompose the input data into
several intrinsic mode functions with EMD algorithm.

3. Forecasting. Separated LSTM neural networks employed to forecast each IMF and residual,
respectively. Reconstruct the forecasting values from each single LSTM model.

Figure 10. The full flowchart of the SD-EMD-LSTM model flowchart.

5. Numerical Experiments

This section presents the forecasting performance of the proposed SD-EMD-LSTM model.
The hourly electric load data from NE-ISO 2003 to 2016 is employed for the models. The forecasting
has been conducted in two time scales, namely, one day ahead (24 h) and one week ahead (168 h).

First, we present the experiments on applying the weighted k-means-based SD selection algorithm
for load forecasting, as well as analyze the optimum value of the clusters k. Second, we verify
the clustering effect of the proposed SD selection method and the need of using the supplemental
feature. Third, experiments in two time scales are conducted to compare the proposed model with the
standalone LSTM, SD-LSTM, and EMD-LSTM models to show the fitting effect of the hybrid model.
Lastly, we compare the forecasting performance with three other models (i.e., ARIMA, BPNN, and SVR)
to illustrate the forecasting accuracy and stability of the SD-EMD-LSTM model. The structure of BPNN
model comprises of 3 layers viz. input, hidden and output layers(6-20-1), where the transfer functions
of hidden layer and output layer are tansig and purelin, respectively. While the training function uses
traingdm, the learning function of threshold and weights use learnged. SVR with LIBSVM package
with C = 8.4065, γ = 0.0869335, ε = 0.000118.

5.1. Evaluation Indices for the Forecasting Performance

The mean absolute percentage error (MAPE) is employed as a criterion of error evaluation to
analyze the forecasting performance.

MAPE =
1
m

m

∑
j=1

∣∣∣∣∣Xj − X̂j

Xj

∣∣∣∣∣ (18)
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where X̂j is the forecasting value, Xj is the actual value, and m is the total number of forecasting points.
For the two forecasting time scales, m is set at 24 h and 168 h.

5.2. Empirical Results and Analysis

We perform simulations of the four examples to verify the predictive ability of the
proposed method:

Example 1: Through the enumeration method, k ranges from 5 to 12, the run is repeated several
times in each k value using the Xgboost-k-means-based SD-EMD-LSTM model. Thereafter, the
prediction accuracy of each k is calculated. Experiments of the 24-h-ahead forecasting in different
seasons are performed to analyze the best k value with the highest prediction accuracy. Figure 11
shows that when the number of clusters equals 9, the prediction curve most closely follows the raw
curve in four days, including 30 October 2016, 5 July 2015, 13 April 2014, and 22 February 2013, which
represent the four seasons.

(a) (b)

(c) (d)

Figure 11. SD-EMD-LSTM forecast with respect to the number of clusters: (a) 30 October 2016;
(b) 5 July 2015; (c) 13 April 2014; (d) 22 February 2013.

MAPE can also be used to determine the ideal number of clusters. Comparison results (see Table 2)
show that the proposed model with 9 clusters outperformed all the other cluster numbers with the
smallest forecasting MAPE of 0.97%. That is, the proposed Xgboost-k-means method can effectively
merge SDs into one cluster. Consequently, we define k = 9 as a priori knowledge in the proposed
SD-EMD-LSTM model to select SD for the subsequent load forecasting.
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Table 2. MAPE(%) for the different number of clusters in one-day ahead prediction.

k 5 6 7 8 9 10 11 12

MAPE(%) 3.81 3.45 3.08 2.05 0.97 1.42 1.94 2.12

Example 2: This example includes two cases. Case 1 verifies the clustering effect of the proposed
SD selection method, and the simple k-means algorithm is used to the SD selection for comparison with
the proposed Xgboost-k-means model. Case 2 demonstrates the importance of using the supplemental
feature, namely, day-ahead peak load. The training period in this example is from 2003 to 2015, and
the prediction period is 2016.

Case 1: EMD-LSTM is combined with the proposed SD selection method and simple k-means
algorithm respectively to verify its performance. In the one-day ahead load forecasting as shown
in Figure 12, Xgboost-k-means hybrid with the EMD-LSTM model fits the raw data better than the
simple k-means clustering algorithm. That is, the Xgboost-k-means algorithm could merge SDs into
one cluster more effectively, thereby improving the prediction accuracy.

Table 3 also verifies this scenario, which shows that the SD-EMD-LSTM model achieved an
improved forecasting performance with a considerably small MAPE, as well as agrees with the
conclusion presented in Section 3. The reason lies in that the Xgboost algorithm has considerable
ability to access each feature’s weight, the limitation of the dimensionality is generally reduced, and
the models are obtained with increasing the forecasting accuracy.

Figure 12. One-day ahead prediction of 20 March 2016.

Table 3. Monthly MAPE(%) of validation phase.

Model January February March April May June July August September October November December

SD-EMD-LSTM 1.03 0.96 0.83 1.09 0.77 0.93 0.96 0.88 1.06 1.12 0.91 1.12
kmeans-EMD-LSTM 2.11 2.17 1.98 2.56 1.83 2.16 1.96 2.03 2.08 1.79 2.04 2.18

Case 2: The SD-EMD-LSTM model is used with and without the supplemental feature
(i.e., day-ahead peak load) to analyze the prediction accuracy on the one-day ahead load forecasting.
Further details are shown in Figure 13.



Energies 2017, 10, 1168 15 of 20

The most significant forecasting errors often occur at the peak points of the forecast load curve.
The reason is that the proposed model with the supplemental feature (i.e., day-ahead peak load) can
achieve an improved forecasting performance at the peak points.

Figure 13. One-day ahead prediction of 26 August 2016.

The hourly mean absolute percentage errors listed in Table 4 indicate that the proposed model
with supplemental input feature (i.e., day-ahead peak load) obtained an average MAPE of 1.10%.
This value is lower than the 1.44% obtained in the model without the supplemental input feature.
Furthermore, SD-EMD-LSTM with supplemental input feature has good prediction accuracy during
peak hours (i.e., from 15:00 to 20:00). Therefore, the day-ahead peak load should be the supplemental
input feature for load forecasting.

Table 4. 24-h forecast MAPE (%) of validation phase.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

SD-EMD-LSTM 1.77 1.42 1.73 2.00 1.87 1.63 0.81 0.20 1.09 1.99 1.75 0.96
SD’-EMD-LSTM 2.20 2.25 2.26 2.21 2.44 2.41 0.93 0.61 1.33 2.13 1.99 0.82

13 14 15 16 17 18 19 20 21 22 23 24 Average

0.49 1.57 1.22 0.47 0.27 0.71 0.29 0.46 0.25 1.33 1.48 0.52 1.10
0.12 1.01 1.46 1.05 1.41 2.40 2.32 1.07 0.15 1.73 1.02 0.33 1.44

Example 3: This example compares the forecasting value of the proposed SD-EMD-LSTM model
to the single LSTM, SD-LSTM, and EMD-LSTM models. The experiments have a forecasting horizon
of h = 24 h and h = 168 h. The training period is from 2003 to 2014, and the prediction period is 2015.

Figure 14a,b show the one-day ahead and one-week ahead forecasting results of the single LSTM,
SD-LSTM, EMD-LSTM, and proposed SD-EMD-LSTM models, respectively.
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(a) (b)

Figure 14. (a) One-day ahead prediction of 3 June 2015. (b) One-week ahead prediction from
18 June 2015 to 24 June 2015.

We can conclude from Figure 14 that the forecasting curve of the proposed SD-EMD-LSTM model
follows the raw data better than the other alternative models for the two forecasting horizon in Example 3.
Evidently, comparing the LSTM curve with those of SD-LSTM and EMD-LSTM shows that the SD selection
can generally enhances the accuracy of the load forecasting in the one-day-ahead and one-week-ahead
forecasting. EMD can also effectively determine the general trend of the real time series.

Table 5 shows the MAPE values per month of all the models in Example 3. The last row of Table 4
lists the average MAPE values for the experiment based on 12 months. The LSTM neural networks
combined with the Xgboost-k-means-based SD selection method is better than the LSTM neural networks
combined with the EMD model but is slightly inferior to the SD-EMD-LSTM model. The evaluation
results of the MAPE indexes and prediction curves for the four models tend to be consistent.

Example 3 enables us to conclude the following points.

(1) The fitting effect of the hybrid model is evidently better than that of the single LSTM neural
networks model in both time scales.

(2) The Xgboost-k-means method can effectively merge SDs into one cluster and prevent the LSTM
neural networks from being trapped into a local optimum, thereby substantially improving the
prediction accuracy.

(3) The data decomposition method divides the singular values into separated IMFs and determines
the general trend of the real time series, thereby effectively improving the performance and
robustness of the model.

In general, the SD-EMD-LSTM model significantly outperforms the three other methods and
achieves a good prediction effect in STLF.
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Table 5. Mape(%) for Load Forecasting in Example 3.

24-h Ahead 168-h Ahead

LSTM SD-LSTM EMD-LSTM SD-EMD-LSTM LSTM SD-LSTM EMD-LSTM SD-EMD-LSTM

January 5.97 2.7 4.39 1.19 9.86 3.37 6.46 1.57
February 4.3 2.13 3.73 0.98 7.88 2.43 5.69 1.22

March 6.89 1.65 4.58 0.66 6.26 2.62 4.77 1.25
April 5.19 2.46 3.63 0.72 7.93 4.34 4.93 2.08
May 6.85 3.97 5.17 1.26 9.65 3.21 6.65 1.79
June 5.64 1.02 3.4 0.83 7.49 3.1 5.12 0.91
July 5.9 2.72 4.09 1.24 9.19 3.13 7.11 1.04

August 4.59 2.16 2.44 1.12 8.3 4.97 6.72 1.63
September 4.31 1.88 3.11 0.85 8.69 4.08 6.07 1.59

October 6.82 2.89 5.94 1.65 8.53 5.02 6.69 1.87
November 4.2 2.84 3.15 1.35 11.81 6.16 8.03 2.31
December 4.46 2.01 3.68 1.05 9.31 3.88 7.96 1.79

Average 5.43 2.37 3.94 1.08 8.74 3.86 6.35 1.59

Example 4: This example compares the forecasting results of ARIMA, BPNN, SVR, and the
proposed SD-EMD-LSTM model. For a fair comparison, we compare their performance with the same
input data sets (i.e., SDs). Figure 15a,b show the one-day ahead and one-week ahead forecasting
results, respectively. The training period is from 2003 to 2013, and the prediction period is 2014.

(a) (b)

Figure 15. (a) One-day ahead prediction of 9 January 2014 are performed by example 4; (b) One-week
ahead prediction from 12 October 2014 to 18 October 2014 are performed by example 4.

Figure 15 shows that the forecasting curve of the proposed SD-EMD-LSTM model is closer to the
raw load curve than the other alternative models in Example 4. The performance results of the three
other methods are insufficient for STLF.

From the MAPE values in Table 6, the experiment results indicate that the proposed model
is significantly superior to the SVR, ARIMA, and BPNN models. MAPE of the SD-EMD-LSTM
model is the lowest among all the models. Its prediction accuracy also reaches 98.96% and 98.44% in
the 24-h-ahead and 168-h-ahead forecasting, respectively. ARIMA has the maximum MAPE value.
Although the three other models determined the general trend of the raw data, their forecasting errors
were extremely high.

The comparison between the two different forecasting time scales demonstrate that the accuracy of
the proposed hybrid model exhibit minimal changes because the LSTM neural networks can maximize
the long-term dependencies in the electric load time series for substantially accurate forecasting.
That is, the SD-EMD-LSTM model can perform longer-horizon load forecasting. Overall, the proposed
hybrid model provides a powerful method that can outperform many other forecasting methods in
the challenging STLF problem.
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Table 6. MAPE(%) For Load Forecasting in Example 4.

24-h Ahead 168-h Ahead

SD-ARIMA SD-BPNN SD-SVR SD-EMD-LSTM SD-ARIMA SD-BPNN SD-SVR SD-EMD-LSTM

January 5.47 4.27 4.29 1.23 11.55 7.52 8.3 2.36
February 4 .43 1.79 1.96 0.75 6.97 9.03 2.29 1.05

March 3.34 2.84 3.5 1.12 5.04 3.42 5.25 1.29
April 4.05 3.74 6.08 1.04 7.94 4.56 7.52 1.09
May 7.88 4.43 2.43 0.95 9.36 5.26 2.41 1.83
June 5.49 5.68 2.93 0.82 6.44 9.26 6.96 1.92
July 3.61 1.92 2.07 1.12 8.5 3.81 3.18 1.69

August 5.86 2.68 3.58 1.87 10.65 9.12 6.29 2.03
September 4.51 1.86 3.68 0.98 9.72 2.19 4.33 1.26

October 6.07 4.28 6.51 0.76 7.98 5.77 8.85 1.28
November 8.51 3.85 2.13 0.99 6.11 4.52 3.72 1.75
December 10.05 5.71 3.47 0.87 11.73 5.44 9.5 1.22

Average 5.48 3.39 3.55 1.04 8.50 5.83 5.72 1.56

6. Conclusions

This study presents an LSTM neural network model hybridized with the SD selection and EMD
methods for STLF. The key idea in selecting SDs is to determine the attribute weights using the Xgboost
algorithm and calculate the distance between the selected day and the day that relies on the different
measured attributes in different weights. Thereafter, the k-means algorithm merges SDs into one cluster
as input data for the subsequent forecasting based on the Xgboost distance. EMD eventually determines
the key features of the SD load at low and high frequencies. Lastly, the separated LSTM neural networks
are used to forecast the future values in low-frequency and high-frequency time series. The proposed
method has been compared with the LSTM, SD-LSTM, EMD-LSTM, ARIMA, BPNN, and SVR models
in real-load data obtained from the NE-ISO for the one-day ahead and one-week ahead load forecasting.
Comparison results demonstrate that the proposed Xgboost-k-means method can effectively merge SDs
into one cluster. Moreover, the EMD-LSTM model has a good ability to accurately forecast the complex
non-linear electric load time series over a long horizon. The aforementioned analysis implies that the
proposed SD-EMD-LSTM framework can be a promising alternative approach to STLF.
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