Influence of Rice Variety and Freezing on Flour Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples Preparations
2.2. Assessment of Milling Performance
2.3. Proximate Analyses of Raw Samples
2.4. Functional Properties of Raw and Frozen Rice Flour Samples
2.5. Starch Proprieties of Raw and Frozen Flour Samples
2.6. Gel Texture Properties of Raw and Frozen Flour Samples
2.7. The Thermo-Mechanical Properties of Raw and Frozen Flour Samples
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Rice Freezing on the Grinding Process
3.2. Functional Properties of Flour Samples Obtained from Raw and Frozen Rice
3.3. Texture Properties of Flour Gels
3.4. The Thermo-Mechanical Properties of Flour Samples from Raw and Frozen Rice
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kadan, R.S.; Bryant, R.J.; Miller, J.A. Effects of milling on functional properties of rice flour. J. Food Sci. 2008, 73, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Ngamnikom, P.; Songsermpong, S. The effects of freeze, dry, and wet grinding processes on rice flour properties and their energy consumption. J. Food Eng. 2011, 104, 632–638. [Google Scholar] [CrossRef]
- Bao, J.S.; Sun, M.; Corke, H. Analysis of the genetic behavior of some starch properties in Indica rice (Oryza sativa L.): Thermal properties, gel texture, swelling volume. Theor. Appl. Genet. 2002, 104, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Kong, X.; Xie, J.; Xu, L. Analysis of Genotypic and Environmental Effects on Rice Starch. 1. Apparent Amylose Content, Pasting Viscosity, and Gel Texture. J. Agric. Food Chem. 2004, 52, 6010–6016. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Oliveira, J.; Pathania, S.; Almeida, A.S.; Brites, C. Rice quality profiling to classify germplasm in breeding programs. J. Cereal Sci. 2017, 76, 17–27. [Google Scholar] [CrossRef]
- Varavinit, S.; Shobsngob, S.; Varanyanond, W.; Chinachoti, P.; Naivikul, O. Effect of Amylose Content on Gelatinization, Retrogradation and Pasting Properties of Flours from Different Cultivars of Thai Rice. Starke 2003, 55, 410–415. [Google Scholar] [CrossRef]
- Yu, S.; Ma, Y.; Menager, L.; Sun, D.-W. Physicochemical Properties of Starch and Flour from Different Rice Cultivar. Food Bioprocess Technol. 2012, 5, 626–637. [Google Scholar] [CrossRef]
- Harnkarnsujarit, N.; Kawai, K.; Suzuki, T. Impacts of freezing and molecular size on structure, mechanical properties and recrystallization of freeze-thawed polysaccharide gels. LWT Food Sci. Technol. 2016, 68, 190–201. [Google Scholar] [CrossRef]
- Yu, S.; Ma, Y.; Sun, D.-W. Effects of freezing rates on starch retrogradation and textural properties of cooked rice during storage. LWT Food Sci. Technol. 2010, 43, 1138–1143. [Google Scholar] [CrossRef]
- Yu, S.; Ma, Y.; Zheng, X.; Liu, X.; Sun, D.-W. Impacts of Low and Ultra-Low Temperature Freezing on Retrogradation Properties of Rice Amylopectin during Storage. Food Bioprocess Technol. 2012, 5, 391–400. [Google Scholar] [CrossRef]
- Falade, K.O.; Christopher, A.S. Physical, functional, pasting and thermal properties of flours and starches of six Nigerian rice cultivars. Food Hydrocoll. 2015, 44, 478–490. [Google Scholar] [CrossRef]
- Wang, L.; Guo, J.; Wang, R.; Shen, C.; Li, Y.; Luo, X.; Li, Y.; Chen, Z. Studies on quality of potato flour blends with rice flour for making extruded noodles. Cereal Chem. 2016, 93, 593–598. [Google Scholar] [CrossRef]
- Yu, L.; Turner, M.S.; Fitzgerald, M.; Stokes, J.R.; Witt, T. Review of the effects of different processing technologies on cooked and convenience rice quality. Trends Food Sci. Technol. 2017, 59, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Godon, B.; Wilhm, C. Primary Cereal Processing a Comprehensive Sourcebook; VCH: New York, NY, USA, 1994; pp. 129–130. [Google Scholar]
- ASRO. Romanian Standards Catalog for Cereal and Milling Products Analysis; SR ISO 712:2005 and SR ISO 2171/2002; Romanian Standards Association: Bucharest, Romanian, 2008. [Google Scholar]
- Abebe, W.; Collar, C.; Ronda, F. Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours. Carbohydr. Polym. 2015, 115, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, M.; De Lamo, B.; Harasym, J.; Ronda, F. Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches. Carbohydr. Polym. 2018, 201, 374–381. [Google Scholar] [CrossRef] [PubMed]
- AACC International. Approved Methods of Analysis, 11th ed.; Methods 56-11.02 and 76-31.01; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- Gibson, T.S.; Solah, V.A.; McCleary, B.V. A procedure to measure amylose in cereal starches and flours with Concanavalin A. J. Cereal Sci. 1997, 25, 111–119. [Google Scholar] [CrossRef]
- Xie, L.; Chen, N.; Tang, S.; Lu, J.; Jiao, G.; Hu, P. Use of Mixolab in Predicting Rice Quality. Cereal Chem. 2011, 88, 333–337. [Google Scholar] [CrossRef]
- Dubat, A.; Boinot, N. Mixolab Applications Handbook. Rheological and Enzymes Analyses; Chopin Technology: Villenueve, France, 2012; pp. 86–87. [Google Scholar]
- Gujral, H.S.; Sharma, B.; Khatri, M. Influence of replacing wheat bran with barley bran on dough rheology, digestibility and retrogradation behavior of chapatti. Food Chem. 2018, 240, 1154–1160. [Google Scholar] [CrossRef]
- Svec, I.; Hruskova, M. The Mixolab parameters of composite wheat/hemp flour and their relation to quality features. LWT Food Sci. Technol. 2015, 60, 623–629. [Google Scholar] [CrossRef]
- Han, C.M.; Shin, J.H.; Kwon, J.B.; Kim, J.S.; Won, J.G.; Kim, J.S. Comparison of morphological and physicochemical properties of a floury rice variety upon pre-harvest sprouting. Foods 2021, 10, 746. [Google Scholar] [CrossRef]
- Devi, A.F.; Fibrianto, K.; Torley, P.J.; Bhandari, B. Physical properties of cryomilled rice starch. J. Cereal Sci. 2009, 1, 1–7. [Google Scholar] [CrossRef]
- Yıldırım, A.; Bayram, M.; Öner, M.D. Bulgur milling using a helical disc mill. J. Food Eng. 2008, 87, 564–570. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, L.; Singh Sandhu, K.; Kaur, J.; Nishinari, K. Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocoll. 2006, 20, 532–542. [Google Scholar] [CrossRef]
- Chung, H.-J.; Liu, Q.; Wei, D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2011, 25, 968–975. [Google Scholar] [CrossRef]
Components | Basmati | Arborio |
---|---|---|
Protein, % | 8.72 ± 0.07 a | 6.74 ± 0.05 b |
Fat, % | 1.23 ± 0.04 a | 1.26 ± 0.04 a |
Crude fiber, % | 1.26 ± 0.06 b | 1.83 ± 0.06 a |
Ash, % | 0.41 ± 0.02 a | 0.38 ± 0.02 a |
Starch, % | 76.19 ± 0.17 b | 77.60 ± 0.09 a |
Parameters | Basmati | Arborio | ||
---|---|---|---|---|
Raw | Frozen | Raw | Frozen | |
Product after grinding | ||||
Particle size distribution | ||||
>630 µm, % | 21.1 ± 0.10 aB* | 3 ± 0.17 bB | 21.4 ± 0.10 aA | 13.6 ± 0.10 bA |
>400 µm, % | 33.3 ± 0.17 bA | 42.4 ± 0.10 aA | 27.8 ± 0.10 bB | 29.9 ± 0.10 aB |
>315 µm, % | 12.1 ± 0.17 aB | 9.9 ± 0.10 bB | 14.6 ± 0.17 aA | 13.1 ± 0.17 bA |
>160 µm, % | 21.9 ± 0.17 bB | 24.9 ± 0.17 aA | 29.7 ± 0.26 aA | 18.2 ± 0.20 bB |
>125 µm, % | 6.2 ± 0.17 bA | 12.4 ± 0.10 aA | 4.4 ± 0.17 bB | 10.9 ± 0.17 aB |
<125 µm, % | 5.4 ± 0.44 bA | 7.3 ± 0.20 aB | 2.2 ± 0.10 bB | 14.3 ± 0.17 aA |
Fineness modules | 3.25 ± 0.01 aA | 2.77 ± 0.01 bA | 3.26 ± 0.01 aA | 2.74 ± 0.01 bB |
Product after grinding and sieving through 315 mesh size | ||||
Flour yield, % | 45.5 ± 0.17 bB | 54.6 ± 0.17 aB | 50.9 ± 0.10 bA | 56.5 ± 0.17 aA |
Flour fineness modules | 1.89 ± 0.01 aB | 1.36 ± 0.02 bB | 2.11 ± 0.02 aA | 1.53 ± 0.02 bA |
Parameters | Basmati | Arborio | ||
---|---|---|---|---|
Raw | Frozen | Raw | Frozen | |
Hydration properties | ||||
Water absorption index, g/g | 5.37 ± 0.11 bA* | 5.72 ± 0.08 aA | 5.23 ± 0.08 bA | 5.41 ± 0.08 aB |
Water solubility index, % | 2.01 ± 0.20 aB | 2.18 ± 0.04 aB | 2.59 ± 0.08 bA | 3.11 ± 0.08 aA |
Swelling power, % | 2.05 ± 0.13 aB | 2.22 ± 0.09 aB | 2.64 ± 0.05 bA | 3.71 ± 0.10 aA |
Solvent retention capacity | ||||
Water, % | 135.37 ± 0.55 aA | 132.72 ± 0.63 bA | 130.89 ± 0.79 aB | 121.90 ± 0.79 bB |
Sucrose, % | 170.20 ± 0.72 bB | 174.15 ± 0.79 aB | 176.47 ± 0.50 bA | 177.92 ± 0.47 aA |
Sodium carbonate, % | 166.98 ± 0.07 aA | 161.75 ± 0.66 bA | 157.91 ± 0.37 aB | 155.92 ± 0.45 bB |
Lactic acid, % | 178.09 ± 0.73 aA | 176.24 ± 0.67 bA | 177.18 ± 0.65 aA | 174.93 ± 0.55 bA |
Parameters | Basmati | Arborio | ||
---|---|---|---|---|
Raw | Frozen | Raw | Frozen | |
Amylose, % | 17.96 ± 0.40 aA | 13.2 ± 0.26 bA | 4.32 ± 0.11 bB | 6.65 ± 0.13 aB |
Damaged starch, % | 5.16 ± 0.14 aA | 5.09 ± 0.16 aA | 4.92 ± 0.11 aA | 4.48 ± 0.11 bB |
Parameters | Basmati | Arborio | ||
---|---|---|---|---|
Raw | Frozen | Raw | Frozen | |
Hardness, N | 0.32 ± 0.03 aA | 0.19 ± 0.03 bA | 0.16 ± 0.03 bB | 0.23 ± 0.03 aA |
Springiness, mm | 8.38 ± 0.11 aA | 7.70 ± 0.11 bA | 6.97 ± 0.15 bB | 7.35 ± 0.13 aB |
Adhesiveness, mJ | 0.51 ± 0.04 bB | 0.84 ± 0.05 aA | 0.90 ± 0.03 aA | 0.34 ± 0.03 bB |
Cohesiveness | 0.71 ± 0.03 aB | 0.74 ± 0.05 aA | 0.81 ± 0.04 aA | 0.79 ± 0.03 aA |
Gumminess, N | 0.23 ± 0.04 aA | 0.14 ± 0.04 aA | 0.13 ± 0.03 bB | 0.19 ± 0.02 aA |
Chewiness, mJ | 1.59 ± 0.03 aA | 1.08 ± 0.07 bB | 0.85 ± 0.05 bB | 1.32 ± 0.03 aA |
Resilience | 0.08 ± 0.01 aA | 0.07 ± 0.01 aA | 0.08 ± 0.01 aA | 0.08 ± 0.01 aA |
Parameters | Basmati | Arborio | ||
---|---|---|---|---|
Raw | Frozen | Raw | Frozen | |
Proteins functionality | ||||
WA, % | 59.50 ± 0.10 aB | 57.90 ± 0.10 bB | 64.60 ± 0.06 aA | 62.00 ± 0.06 bA |
C1, Nm | 1.17 ± 0.01 aA | 1.16 ± 0.01 aA | 1.08 ± 0.01 aB | 1.07 ± 0.01 aB |
CS, Nm | 1.23 ± 0.01 aA | 0.90 ± 0.01 bB | 0.75 ± 0.01 bB | 0.94 ± 0.01 aA |
C2, Nm | 0.86 ± 0.01 aA | 0.37 ± 0.01 bB | 0.30 ± 0.02 bB | 0.42 ± 0.01 aA |
TC2, °C | 54.40 ± 0.10 bA | 58.70 ± 0.10 aA | 52.50 ± 0.10 aB | 50.80 ± 0.10 bB |
Starch behavior | ||||
C3, Nm | 3.42 ± 0.01 aA | 2.21 ± 0.01 bB | 1.93 ± 0.01 bB | 2.29 ± 0.02 aA |
TC3, °C | 84.40 ± 0.10 aA | 82.40 ± 0.10 bA | 77.80 ± 0.10 aB | 76.80 ± 0.10 bB |
C4, Nm | 3.06 ± 0.01 aA | 2.57 ± 0.01 bA | 1.47 ± 0.01 bB | 1.95 ± 0.01 aB |
TC4, °C | 89.40 ± 0.10 aA | 88.60 ± 0.10 bA | 86.20 ± 0.10 aB | 86.10 ± 0.10 aB |
C5, Nm | 4.90 ± 0.02 aA | 4.74 ± 0.01 bA | 2.79 ± 0.01 bB | 3.58 ± 0.01 aB |
Dough performance indicators | ||||
C3 − C4, Nm | 0.36 ± 0.01 aB | −0.36 ± 0.01 bB | 0.46 ± 0.02 aA | 0.34 ± 0.02 bA |
C4/C3 | 0.90 ± 0.01 bA | 1.17 ± 0.02 aA | 0.76 ± 0.01 bB | 0.85 ± 0.01 aB |
C5 − C4, Nm | 1.84 ± 0.01 bA | 2.17 ± 0.01 aA | 1.32 ± 0.02 bB | 1.64 ± 0.03 aB |
MPW, % | −5.13 ± 0.88 bB | 22.41 ± 0.79 aA | 30.56 ± 1.40 aA | 12.15 ± 1.51 bB |
TMPW, % | 31.51 ± 1.64 bB | 45.69 ± 1.16 aA | 41.70 ± 1.83 bA | 48.88 ± 2.33 aA |
SR, % | 37.56 ± 0.13 bB | 45.78 ± 0.18 aA | 47.35 ± 0.55 aA | 45.69 ± 0.65 bA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banu, I.; Aprodu, I. Influence of Rice Variety and Freezing on Flour Properties. Appl. Sci. 2021, 11, 5716. https://doi.org/10.3390/app11125716
Banu I, Aprodu I. Influence of Rice Variety and Freezing on Flour Properties. Applied Sciences. 2021; 11(12):5716. https://doi.org/10.3390/app11125716
Chicago/Turabian StyleBanu, Iuliana, and Iuliana Aprodu. 2021. "Influence of Rice Variety and Freezing on Flour Properties" Applied Sciences 11, no. 12: 5716. https://doi.org/10.3390/app11125716
APA StyleBanu, I., & Aprodu, I. (2021). Influence of Rice Variety and Freezing on Flour Properties. Applied Sciences, 11(12), 5716. https://doi.org/10.3390/app11125716