Formulation and Thermomechanical Characterization of Functional Hydrogels Based on Gluten Free Matrices Enriched with Antioxidant Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Gluten-Free Gelled Matrix Formulation
2.3. Thermorheological Testing of Gluten-Free Systems
2.4. Textural Testing of Gelled Gluten-Free Matrices
2.5. Water Syneresis of Gelled Gluten-Free Matrices
2.6. Color Testing of Gelled Gluten-Free Matrices
2.7. Statistical Analysis
3. Results and Discussion
3.1. Thermorheological Behavior of Gluten-Free Matrices
3.2. Textural Behavior of Gluten-Free Matrices
3.3. Color Properties of Proposed Gluten-Free Matrices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Salgado-Ordosgoitia, R.D.; Paternina-Contreras, A.L.; Cohen-Manrique, C.S.; Rodríguez-Manrique, J.A. Analysis of the Gelatinization Curves of Native Starches of three Species of Yam: Criollo (Dioscorea alata), Hawthorn (Dioscorea rotundata) and Diamond 22. Inf. Tecnológica 2019, 30, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.D.; Chenlo, F.; Moreira, R. Rheological Effect of Gelatinisation Using Different Temperature-Time Conditions on Potato Starch Dispersions: Mechanical Characterisation of the Obtained Gels. Food Bioprocess Technol. 2018, 11, 132–140. [Google Scholar] [CrossRef]
- Singh, B.; Pal, J.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- López-Hortas, L.; Conde, E.; Falqué, E.; Domínguez, H.; Torres, M.D. Recovery of aqueous phase of broccoli obtained by MHG technique for development of hydrogels with antioxidant properties. LWT Food Sci. Technol. 2019, 107, 98–106. [Google Scholar] [CrossRef]
- López-Hortas, L.; Conde, E.; Falqué, E.; Domínguez, H.; Torres, M.D. Preparation of Hydrogels Composed of Bioactive Compounds from Aqueous Phase of Artichoke Obtained by MHG Technique. Food Bioprocess Technol. 2019, 12, 1304–1315. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Jiménez-Escrig, A.; Rupérez, P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Int. Food Res. J. 2010, 43, 2289–2294. [Google Scholar] [CrossRef]
- Pereira, L.; Van De Velde, F. Portuguese carrageenophytes: Carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydr. Polym. 2011, 84, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.D.; Chenlo, F.; Moreira, R. Rheology of ĸ/ı -hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation. Int. J. Biol. Macromol. 2016, 86, 418–424. [Google Scholar] [CrossRef]
- Milani, J.; Maleki, G. Hydrocolloids in Food Industry. In Food Industrial Processes-Methods and Equipments; Valdez, B., Ed.; Intech Open: Rijeka, Croatia, 2012; pp. 17–38. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, G.; Torres, M.D.; Sousa-Pinto, I.; Hilliou, L. Effect of pre-extraction alkali treatment on the chemical structure and gelling properties of extracted hybrid carrageenan from Chondrus crispus and Ahnfeltiopsis devoniensis. Food Hydrocoll. 2015, 50, 150–158. [Google Scholar] [CrossRef]
- Rodríguez-Seoane, P.; Domínguez, H.; Torres, M.D. Mechanical Characterization of Biopolymer-Based Hydrogels Enriched with Paulownia Extracts Recovered Using a Green Technique. Appl. Sci. 2020, 10, 8439. [Google Scholar] [CrossRef]
- Sanz, V.; Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. Valorisation of Camellia sinensis branches as a raw product with green technology extraction methods. Curr. Res. Nutr. 2020, 2, 20–24. [Google Scholar] [CrossRef]
- Sanz, V.; Flórez-Fernández, N.; Domínguez, H.; Torres, D. Clean technologies applied to the recovery of bioactive extracts from Camellia sinensis leaves agricultural wastes. Food Bioprod. Process. 2020, 122, 214–221. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.D.; Fradinho, P.; Rodríguez, P.; Falqué, E.; Santos, V.; Domínguez, H. Biorefinery concept for discarded potatoes: Recovery of starch and bioactive compounds. J. Food Eng. 2020, 275, 109886. [Google Scholar] [CrossRef]
- Ponthier, E.; Domínguez, H.; Torres, M.D. The microwave assisted extraction sway on the features of antioxidant compounds and gelling biopolymers from Mastocarpus stellatus. Algal Res. 2020, 51, 102081. [Google Scholar] [CrossRef]
- Sanz, V.; Torres, M.D.; López Vilariño, J.M.; Domínguez, H. Green extraction of biocompounds from Perle Hallertau and Nuggets hops pellets. Under review. 2021. [Google Scholar]
- Bashir, K.; Swer, T.L.; Prakash, K.S.; Aggarwal, M. Physico-chemical and functional properties of gamma irradiated whole wheat flour and starch. LWT Food Sci. Technol. 2017, 76, 131–139. [Google Scholar] [CrossRef]
- Lefatle, M.C.; John, M.J. Mechanical, rheological and viscoelastic properties of polysaccharide and protein based aerogels. RSC Green Chem. R. Soc. Chem. 2018, 177–200. [Google Scholar] [CrossRef]
- Xing, J.-J.; Li, D.; Wang, L.-J.; Adhikari, B. Temperature thresholds and time-temperature dependence of gelatinization for heat-moisture treated corn starch. J. Food Eng. 2018, 217, 43–49. [Google Scholar] [CrossRef]
- Hang, N.D.; Van Thinh, L.; Duong, D.Q. Development and evaluation of neem gel formulation using gum karaya as gelling agent. RJPT 2020, 13, 1859–1864. [Google Scholar]
- Nunes, M.C.; Raymundo, A.; Sousa, I. Rheological behavior and microstructure of pea protein/κ- carrageenan/starch gels with different setting conditions. Food Hydrocoll. 2006, 20, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Imeson, A. Food Stabilisers, Thickeners and Gelling Agents; Wiley Online Library: Oxford, UK, 2010. [Google Scholar]
- Mao, L.; Lu, Y.; Cui, M.; Miao, S.; Gao, Y. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit. Rev. Food Sci. Nutr. 2020, 60, 1651–1666. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.; Chenlo, F.; Torres, M.D. Effect of shortenings on the rheology of gluten-free doughs: Study of chestnut flour with chia flour, olive and sunflower oils. J. Texture Stud. 2012, 43, 375–383. [Google Scholar] [CrossRef]
- Fradinho, P.; Sousa, I.; Raymundo, A. Functional and thermorheological properties of rice flour gels for gluten-free pasta applications. Int. J. Food Sci. Technol. 2019, 54, 1109–1120. [Google Scholar] [CrossRef]
- Fradinho, P.; Soares, R.; Niccolai, A.; Sousa, I.; Raymundo, A. Pyllium husk gel to reinforce structure of gluten-free pasta? LWT 2020, 131, 109787. [Google Scholar] [CrossRef]
- Hargreaves, S.M.; Zandonadi, R.P. Flaxseed and Chia Seed Gel on Characteristics of Gluten-Free Cake. J. Culin. Sci. Technol. 2018, 16, 378–388. [Google Scholar] [CrossRef]
- Purwandari, U.; Farida, U.; Dianing, V.P.P.; Sari, L.Y.; Kurniawati, A.G.; Warnianti, A.; Fauziyah, E. Texture, sensory, antioxidant, and blood glucose profile of gluten-free taro and banana noodles using gathotan flour as texturing agent. Int. Food Res. J. 2018, 25, 2459–2466. [Google Scholar]
- Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chem. 2021, 338, 127972. [Google Scholar] [CrossRef]
- Chen, N.; Chen, L.; Gao, H.-X.; Zeng, W.-C. Mechanism of bridging and interfering effects of tea polyphenols on starch molecules. J. Food Process. Preserv. 2020, 44, 14576. [Google Scholar] [CrossRef]
- Torres, M.D.; Arufe, S.; Chenlo, F.; Moreira, R. Coeliacs cannot live by gluten-free bread alone—Every once in awhile they need antioxidants. Int. J. Food Sci. Technol. 2017, 52, 81–90. [Google Scholar] [CrossRef]
- Szabłowska, E.; Tańska, M. Acorn flour properties depending on the production method and laboratory baking test results: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 980–1008. [Google Scholar] [CrossRef] [PubMed]
- Betoret, E.; Rosell, C.M. Enrichment of bread with fruits and vegetables: Trends and strategies to increase functionality. Cereal Chem. 2020, 97, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, W.; Li, Y. Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. J. Funct. Foods 2019, 52, 629–639. [Google Scholar] [CrossRef]
Code | Sample | Technology | Solvent | Temperature (°C) | Time (min) | Irradiation Power (W) | TPC (mg GAE/g Extract) |
---|---|---|---|---|---|---|---|
E1 | CSB | MAE | Water | 140 | 2 | 7.1 | 55.1 * |
E2 | AH | Water | 200 | 17 | - | 48.4 * | |
E3 | CSL | MHG + AH | Water | -; 140 | 10; 6.5 | 200; - | 131.8 * |
E4 E5 | MHG + US MHG + US + AH | Water Water | -; 80 -; 80; 140 | 10; 15 10; 30; 5.5 | 300; - 300; -; - | 121.1 * 124.3 * | |
E6 | PH | US + MAE | Ethanol | 55; 190 | 30; 5 | -; 18 | 77.0 |
E7 | NH | US + MAE | Ethanol | 55; 190 | 120; 5 | -; 17.6 | 99.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz, V.; Domínguez, H.; Torres, M.D. Formulation and Thermomechanical Characterization of Functional Hydrogels Based on Gluten Free Matrices Enriched with Antioxidant Compounds. Appl. Sci. 2021, 11, 1962. https://doi.org/10.3390/app11041962
Sanz V, Domínguez H, Torres MD. Formulation and Thermomechanical Characterization of Functional Hydrogels Based on Gluten Free Matrices Enriched with Antioxidant Compounds. Applied Sciences. 2021; 11(4):1962. https://doi.org/10.3390/app11041962
Chicago/Turabian StyleSanz, Vanesa, Herminia Domínguez, and María Dolores Torres. 2021. "Formulation and Thermomechanical Characterization of Functional Hydrogels Based on Gluten Free Matrices Enriched with Antioxidant Compounds" Applied Sciences 11, no. 4: 1962. https://doi.org/10.3390/app11041962