Perception and Action under Different Stimulus Presentations: A Review of Eye-Tracking Studies with an Extended View on Possibilities of Virtual Reality
Abstract
:1. Introduction
2. Materials and Method
3. Results
3.1. In Situ vs. Video Presentation
3.2. Different Perspectives in Video Presentations
3.3. Reality vs. Virtual Reality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mann, D.T.Y.; Williams, A.M.; Ward, P.; Janelle, C.M. Perceptual-cognitive expertise in sport: A meta-analysis. J. Sport Exerc. Psychol. 2007, 29, 457–478. [Google Scholar] [CrossRef] [PubMed]
- Vestberg, T.; Gustafson, R.; Maurex, L.; Ingvar, M.; Petrovic, P. Executive functions predict the success of top-soccer players. PLoS ONE 2012, 7, e34731. [Google Scholar] [CrossRef] [PubMed]
- Gray, R. Links Between Attention, Performance Pressure, and Movement in Skilled Motor Action. Curr. Dir. Psychol. Sci. 2011, 20, 301–306. [Google Scholar] [CrossRef]
- Roca, A.; Ford, P.R.; McRobert, A.P.; Williams, A.M. Perceptual-cognitive skills and their interaction as a function of task constraints in soccer. J. Sport Exerc. Psychol. 2013, 35, 144–155. [Google Scholar] [CrossRef]
- Loffing, F.; Cañal-Bruland, R. Anticipation in sport. Curr. Opin. Psychol. 2017, 16, 6–11. [Google Scholar] [CrossRef]
- Duchowski, A. (Ed.) Eye Tracking Methodology; Springer: London, UK, 2007. [Google Scholar]
- Hüttermann, S.; Noël, B.; Memmert, D. Eye tracking in high-performance sports: Evaluation of its application in expert athletes. Int. J. Comput. Sci. Sport 2018, 17, 182–203. [Google Scholar] [CrossRef] [Green Version]
- Afonso, J.; Garganta, J.; Mcrobert, A.; Williams, A.M.; Mesquita, I. The perceptual cognitive processes underpinning skilled performance in volleyball: Evidence from eye-movements and verbal reports of thinking involving an in situ representative task. J. Sports Sci. Med. 2012, 11, 339. [Google Scholar] [PubMed]
- Canal-Bruland, R.; van der Kamp, J.; Arkesteijn, M.; Janssen, R.G.; van Kesteren, J.; Savelsbergh, G.J.P. Visual search behaviour in skilled field-hockey goalkeepers. Int. J. Sport Psychol. 2010, 41, 327. [Google Scholar]
- Abernethy, B.; Russell, D.G. The relationship between expertise and visual search strategy in a racquet sport. Hum. Mov. Sci. 1987, 6, 283–319. [Google Scholar] [CrossRef]
- Gibson, J.J. The Ecological Approach to Visual Perception; Houghton, Mifflin and Company: Boston, MA, USA, 1979. [Google Scholar]
- Brunswik, E. Perception and the Representative Design of Psychological Experiments; University of California Press: Berkeley, CA, USA, 1956. [Google Scholar]
- Williams, A.M.; Ward, P.; Knowles, J.M.; Smeeton, N.J. Anticipation skill in a real-world task: Measurement, training, and transfer in tennis. J. Exp. Psychol. Appl. 2002, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Dicks, M.; Button, C.; Davids, K. Examination of gaze behaviors under in situ and video simulation task constraints reveals differences in information pickup for perception and action. Atten. Percept. Psychophys. 2010, 72, 706–720. [Google Scholar] [CrossRef] [Green Version]
- Hogarth, R.M.; Karelaia, N. Heuristic and linear models of judgment: Matching rules and environments. Psychol. Rev. 2007, 114, 733. [Google Scholar] [CrossRef] [Green Version]
- Kurz, J.; Munzert, J. How the experimental setting influences representativeness: A review of gaze behavior in football penalty takers. Front. Psychol. 2018, 9, 682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, J.N. Perception, Cognition, and Decision Training: The Quiet Eye in Action; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Davids, K.; AraúJo, D.; Button, C.; Renshaw, I. Degenerate Brains, Indeterminate Behavior, and Representative Tasks: Implications for Experimental Design in Sport Psychology Research. In Handbook of Sport Psychology; Tenenbaum, G., Eklund, R.C., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 224–244. [Google Scholar] [CrossRef]
- Al-Abood, S.A.; Bennett, S.J.; Hernandez, F.M.; Ashford, D.; Davids, K. Effect of verbal instructions and image size on visual search strategies in basketball free throw shooting. J. Sports Sci. 2002, 20, 271–278. [Google Scholar] [CrossRef]
- Mueller, F.; Stevens, G.; Thorogood, A.; O’Brien, S.; Wulf, V. Sports over a distance. Pers. Ubiquitous Comput. 2007, 11, 633–645. [Google Scholar] [CrossRef]
- Beavan, A.; Chin, V.; Ryan, L.M.; Spielmann, J.; Mayer, J.; Skorski, S.; Meyer, T.; Fransen, J. A Longitudinal Analysis of the Executive Functions in High-Level Soccer Players. J. Sport Exerc. Psychol. 2020, 42, 349–357. [Google Scholar] [CrossRef]
- Sandelowski, M.; Docherty, S.; Emden, C. Qualitative metasynthesis: Issues and techniques. Res. Nurs. Health 1997, 20, 365–371. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Abernethy, B.; Thomas, K.T.; Thomas, J.T. Strategies for improving understanding of motor expertise [or mistakes we have made and things we have learned!!]. In Advances in Psychology, 2nd ed.; Starkes, J.L., Allard, F., Eds.; Elsevier: Amsterdam, The Netherlands, 1993; Volume 102, pp. 317–356. [Google Scholar]
- Hernández, F.J.M.; Romero, F.Á.; Vaíllo, R.R.; del Campo, V.L. Visual behaviour of tennis coaches in a court and video-based conditions. RICYDE. Rev. Int. Cienc. Deporte. 2006, 2, 29–41. [Google Scholar] [CrossRef]
- Ericsson, K.A.; Ward, P. Capturing the naturally occurring superior performance of experts in the laboratory: Toward a science of expert and exceptional performance. Curr. Dir. Psychol. Sci. 2007, 16, 346–350. [Google Scholar] [CrossRef]
- Cauraugh, J.H.; Janelle, C.M. Visual Search and Cue Utilization in Racket Sports: Interceptive Actions in Sport; Routledge Taylor & Francis Group: London, UK, 2002. [Google Scholar]
- Afonso, J.; Garganta, J.; Mcrobert, A.; Williams, M.; Mesquita, I. Visual search behaviours and verbal reports during film-based and in situ representative tasks in volleyball. Eur. J. Sport Sci. 2014, 14, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Zeuwts, L.; Vansteenkiste, P.; Deconinck, F.; van Maarseveen, M.; Savelsbergh, G.; Cardon, G.; Lenoir, M. Is gaze behaviour in a laboratory context similar to that in real-life? A study in bicyclists. Transp. Res. Part F Traffic Psychol. Behav. 2016, 43, 131–140. [Google Scholar] [CrossRef]
- Petit, J.-P.; Ripoll, H. Scene perception and decision making in sport simulation: A masked priming investigation. Int. J. Sport Psychol. 2008, 39, 1–19. [Google Scholar]
- Mann, D.L.; Farrow, D.; Shuttleworth, R.; Hopwood, M.; MacMahon, C. The influence of viewing perspective on decision-making and visual search behaviour in an invasive sport. Int. J. Sport Psychol. 2009, 40, 546–564. [Google Scholar]
- Land, M.; Tatler, B. Looking and Acting: Vision and Eye Movements in Natural Behaviour; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Akbaş, A.; Marszałek, W.; Kamieniarz, A.; Polechoński, J.; Słomka, K.J.; Juras, G. Application of Virtual Reality in Competitive Athletes–A Review. J. Hum. Kinet. 2019, 69, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basdogan, C.; Sedef, M.; Harders, M.; Wesarg, S. VR-based simulators for training in minimally invasive surgery. IEEE Comput. Graph. Appl. 2007, 27, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Bailenson, J.N.; Yee, N.; Blascovich, J.; Beall, A.C.; Lundblad, N.; Jin, M. The Use of Immersive Virtual Reality in the Learning Sciences: Digital Transformations of Teachers, Students, and Social Context. J. Learn. Sci. 2008, 17, 102–141. [Google Scholar] [CrossRef] [Green Version]
- Bideau, B.; Kulpa, R.; Ménardais, S.; Fradet, L.; Multon, F.; Delamarche, P.; Arnaldi, B. Real handball goalkeeper vs. virtual handball thrower. Presence Teleoperat. Virtual Environ. 2003, 12, 411–421. [Google Scholar] [CrossRef]
- Bandow, N.; Witte, K.; Masik, S. Development and Evaluation of a Virtual Test Environment for Performing Reaction Tasks. Int. J. Comput. Sci. Sport 2012, 11, 4–15. [Google Scholar]
- Dörner, R.; Broll, W.; Grimm, P.; Jung, B. Virtual und Augmented Reality. In Grundlagen und Methoden der Virtuellen und Augmentierten Realität; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Pastel, S.; Chen, C.-H.; Martin, L.; Naujoks, M.; Petri, K.; Witte, K. Comparison of gaze accuracy and precision in real-world and virtual reality. Virtual Real. 2020, 25, 175–189. [Google Scholar] [CrossRef]
- Tauscher, J.-P.; Schottky, F.W.; Grogorick, S.; Bittner, P.M.; Mustafa, M.; Magnor, M. Immersive EEG: Evaluating Electroencephalography in Virtual Reality. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; IEEEVR, Ed.; IEEE: New York, NY, USA, 2019; pp. 1794–1800. [Google Scholar]
- Bandow, N.; Emmermacher, P.; Stucke, C.; Masik, S.; Witte, K. Comparison of a Video and a Virtual Based Environment Using the Temporal and Spatial Occlusion Technique for Studying Anticipation in Karate. Int. J. Comput. Sci. Sport 2014, 13, 1. [Google Scholar]
- Witte, K.; Emmermacher, P.; Bandow, N.; Masik, S. Usage of virtual reality technology to study reactions in karate-kumite. Int. J. Sports Sci. Eng. 2012, 6, 17–24. [Google Scholar]
- Petri, K.; Bandow, N.; Masik, S.; Witte, K. Improvement of Early Recognition of Attacks in Karate Kumite Due to Training in Virtual Reality. Sportarea 2019, 4, 294–308. [Google Scholar] [CrossRef]
- Cohen, M.A.; Botch, T.L.; Robertson, C.E. The limits of color awareness during active, real-world vision. Proc. Natl. Acad. Sci. USA 2020, 117, 13821–13827. [Google Scholar] [CrossRef] [PubMed]
- Roth, T.; Weier, M.; Hinkenjann, A.; Li, Y.; Slusallek, P. A Quality-Centered Analysis of Eye Tracking Data in Foveated Rendering. J. Eye Mov. Res. 2017, 10. [Google Scholar] [CrossRef]
- Turnbull, P.R.K.; Phillips, J.R. Ocular effects of virtual reality headset wear in young adults. Sci. Rep. 2017, 7, 16172. [Google Scholar] [CrossRef]
- Hoffman, D.M.; Girshick, A.R.; Akeley, K.; Banks, M.S. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 2008, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, K.; Wiemeyer, J. Depth perception and spatial presence experience in stereoscopic 3D sports broadcasts. In Proceedings of the 2012 International Conference on 3D Imaging (IC3D), Liège, Belgium, 3–5 December 2012; IEEE: New York, NY, USA, 2012; pp. 1–6. [Google Scholar]
- Dicks, M.; Davids, K.; Button, C. Representative task design for the study of perception and action in sport. Int. J. Sport Psychol. 2009, 40, 506. [Google Scholar]
- Covaci, A.; Olivier, A.-H.; Multon, F. Visual perspective and feedback guidance for vr free-throw training. IEEE Comput. Graph. Appl. 2015, 35, 55–65. [Google Scholar] [CrossRef]
- Keil, J.; Edler, D.; O’Meara, D.; Korte, A.; Dickmann, F. Effects of Virtual Reality Locomotion Techniques on Distance Estimations. ISPRS Int. J. Geo-Inf. 2021, 10, 150. [Google Scholar] [CrossRef]
N = | Population/Sports/Movement | Outcome Measure | Stimulus Presentation | Statistics and Effects | |
---|---|---|---|---|---|
Hernández et al., 2006 | 10 males | Tennis coaches (five experienced Five novices); Error detection in second topspin service (10 times) | Number of fixations, fixation duration | 2-D video screen; in situ presentation (on court); 2 D-video screen | Fixations ↓ Fixation duration↓ for 3-D and second 2-D presentation (p < 0.001); Novices more fixations than experienced |
Dicks et al., 2010 | 8 males | Experienced Goalkeepers; Penalty kicks | Mean Fixation Duration, Mean Number of Fixation Locations, Mean Number of Fixations | In situ with verbal, movement and interceptive response; Video-based with verbal and movement response | Sig. differences for condition: fixation duration (F [4,23] = 3.117, p < 0.05) and number of fixation locations (F [4,23] = 4.218, p < 0.01); No sig. differences: number of fixations (F [4,23] = 2.404, p = 0.08) |
Afonso et al., 2014 | 9 females | Experienced volleyball players; acted as background defenders (six scenarios) | Number of fixations, fixation duration; number of locations | In situ with verbal response; video-based with verbal response | Fixation duration ↓ for video-based presentation (p = 0.02); No differences for number of fixations (p = 0.37) and locations (p = 0.10) |
Zeuwts et al., 2016 | 8 females, 13 males | No sports context population (adults); high quality bicycle path and a low-quality bicycle path (±700 m) | Number of Fixations, Saccades between the AOI (Areas of Interest) | In situ and video condition | Significant correlation (r = 0.507, p < 0.001) for dwell time (in %) between the laboratory and field condition |
N = | Population/Sports/Movement | Outcome Measure | Stimulus Presentation | Statistics and Effects | |
---|---|---|---|---|---|
Petit & Ripol 2008 | Unknown | Experienced vs. inexperienced soccer players | Decision latency and visual behavior (no further description) | Broadcast point of view (external) vs. view of the players (internal) | Internal presentation led to faster and more precise decisions; Significant influence of presentation mode on decision latency and visual behavior (no test statistics reported). |
Mann et al. 2009 | 19 males | Skilled youth soccer players | Number of fixations, | Player perspective vs. aerial view | More extensive search and higher rate of fixations in the aerial perspective (t [12] = 4.90, p < 0.001, d = 0.92); Shorter search rate in the aerial view (t [12] = 4.90, p < 0.002, d = 0.75); Significant effect of the viewing perspective on fixation location (F [8,5] = 6.56, p = 0.027, ɳp2 = 0.91). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heilmann, F.; Witte, K. Perception and Action under Different Stimulus Presentations: A Review of Eye-Tracking Studies with an Extended View on Possibilities of Virtual Reality. Appl. Sci. 2021, 11, 5546. https://doi.org/10.3390/app11125546
Heilmann F, Witte K. Perception and Action under Different Stimulus Presentations: A Review of Eye-Tracking Studies with an Extended View on Possibilities of Virtual Reality. Applied Sciences. 2021; 11(12):5546. https://doi.org/10.3390/app11125546
Chicago/Turabian StyleHeilmann, Florian, and Kerstin Witte. 2021. "Perception and Action under Different Stimulus Presentations: A Review of Eye-Tracking Studies with an Extended View on Possibilities of Virtual Reality" Applied Sciences 11, no. 12: 5546. https://doi.org/10.3390/app11125546
APA StyleHeilmann, F., & Witte, K. (2021). Perception and Action under Different Stimulus Presentations: A Review of Eye-Tracking Studies with an Extended View on Possibilities of Virtual Reality. Applied Sciences, 11(12), 5546. https://doi.org/10.3390/app11125546