Assessment of Soil Quality under Different Soil Management Strategies: Combined Use of Statistical Approaches to Select the Most Informative Soil Physico-Chemical Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Long-Term Field Experiment
2.2. Soil Sampling and Laboratory Measurements
2.3. Data Analysis
3. Results
3.1. Preliminary Statistical Analysis
3.2. Analysis of Variance
3.3. Principal Component Analysis
3.4. Stepwise Discriminant Analysis
3.5. Partial Least Squares Regression and VIP Statistics
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | air capacity |
BD | dry bulk density |
C_biomass | microbial biomass carbon |
HA_FA | humic and fulvic acid carbon |
MT | minimum tillage |
NT | no-tillage |
N | total nitrogen |
PCA | principal component analysis |
PLSR | partial least squares regression |
PMAC | macroporosity |
P_Olsen | Olsen available phosphorus |
RFC | relative field capacity |
SDA | stepwise discriminant analysis |
SPQ | soil physical quality |
SQIs | soil quality indices |
TEC | alkali-extractable carbon |
TOC | total organic carbon |
VIP and PLS-VIP | variable importance for projection |
WEN | water extractable nitrogen |
WEOC | water extractable organic carbon |
References
- Palm, C.; Sanchez, P.; Ahamed, S.; Awiti, A. Soils: A contemporary perspective. Annu. Rev. Environ. Resour. 2007, 32, 99–129. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Baez, S.E.; Domínguez-Haydar, Y.; Meli, P.; van Meervel, I.; Vásquez, K.V.; Castellini, M. Key Gaps in Soil Monitoring during Forest Restoration in Colombia. Restor. Ecol. 2021. Accepted Author Manuscript. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Zornoza, R.; Acosta, J.A.; Bastida, F.; Domínguez, S.G.; Toledo, D.M.; Faz, A. Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil 2015, 1, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Bongiorno, G.; Baic, Z.; Creamerb, R.E.; De Deynb, G.; de Goedeb, R.; Fleskensd, L.; Geissend, V.; Kuyperb, T.W.; Mädera, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Svoray, T.; Hassid, I.; Atkinson, P.M.; Moebius-Clune, B.N.; van Es, H.M. Mapping soil health over large agriculturally important areas. Soil Sci. Soc. Am. J. 2015, 79, 1420–1434. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Di Prima, S.; Iovino, M.; Bagarello, V. Improved beerkan run methodology to assess water impact effects on infiltration and hydraulic properties of a loam soil under conventional- and no-tillage. Soil Sci. Soc. Am. J. 2021. Accepted Author Manuscript. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Sisto, D.; Iovino, M. The mechanical impact of water affected the soil physical quality of a loam soil under minimum tillage and no-tillage: An assessment using Beerkan multi-height runs and BEST-procedure. Land 2021, 10, 195. [Google Scholar] [CrossRef]
- Nouwakpo, S.K.; Song, J.; Gonzalez, J.M. Soil structural stability assessment with the fluidized bed, aggregate stability, and rainfall simulation on long-term tillage and crop rotation systems. Soil Tillage Res. 2018, 178, 65–71. [Google Scholar] [CrossRef]
- Castellini, M.; Di Prima, S.; Moret-Fernández, D.; Lassabatere, L. Rapid and accurate measurement methods for determining soil hydraulic properties: A review. J. Hydrol. Hydromech. 2021, 69, 1–19. [Google Scholar] [CrossRef]
- Pranagal, J.; Wozniak, A. 30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem. Agric. Water Manag. 2021, 243, 106408. [Google Scholar] [CrossRef]
- Castellini, M.; Vonella, A.V.; Ventrella, D.; Rinaldi, M.; Baiamonte, G. Determining soil hydraulic properties using infiltrometer techniques: An assessment of temporal variability in a long-term experiment under minimum- and no-tillage soil management. Sustainability 2020, 12, 5019. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Barca, E.; Iovino, M. Application of multivariate analysis techniques for selecting soil physical quality indicators: A case study in long-term field experiments in Apulia (Southern Italy). Soil Sci. Soc. Am. J. 2019, 83, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Ferrara, R.M.; Mazza, G.; Muschitiello, C.; Castellini, M.; Stellacci, A.M.; Navarro, A.; Lagomarsino, A.; Vitti, C.; Rossi, R.; Rana, G. Short-term effects of conversion to no-tillage on respiration and chemical-physical properties of the soil: A case study in a wheat cropping system in semi-dry environment. Ital. J. Agrometeorol. 2017, 1, 47–58. [Google Scholar]
- Devine, S.; Markewitz, D.; Hendrix, P.; Coleman, D. Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades. PLoS ONE 2014, 9, e84988. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Elliott, E.T.; Paustian, K. Aggregate and SOM dynamics under conventional and no tillage systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration. under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Schoenau, J.J.; Drury, C.F. Scientific and practical benefits of long-term field studies. Can. J. Soil Sci. 2014, 94, 253–254. [Google Scholar] [CrossRef]
- Diacono, M.; Fiore, A.; Farina, R.; Canali, S.; Di Bene, C.; Testani, E.; Montemurro, F. Combined agro-ecological strategies for adaptation of organic horticultural systems to climate change in Mediterranean environment. Ital. J. Agron. 2016, 11, 85–91. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Canali, S.; Montemurro, F. Agronomic performance and sustainability indicators in organic tomato combining different agro-ecological practices. Nutr. Cycl. Agroecosyst. 2018, 112, 101–117. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; Santos, C.A.; Alves, P.R.L.; Paula, A.M.; Nakatani, A.S.; Pereira, J.M.; Nogueira, M.A. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Cherubin, M.R.; Karlen, D.L.; Franco, A.L.; Cerri, C.E.; Tormena, C.A.; Cerri, C.C. A Soil Management Assessment Framework (SMAF) evaluation of Brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 2016, 80, 215–226. [Google Scholar] [CrossRef]
- Manici, L.M.; Castellini, M.; Caputo, F. Soil-inhabiting fungi can integrate soil physical indicators in multivariate analysis of Mediterranean agroecosystem dominated by old olive groves. Ecol. Indic. 2019, 106, 105490. [Google Scholar] [CrossRef]
- Armenise, E.; Redmile-Gordon, M.A.; Stellacci, A.M.; Ciccarese, A.; Rubino, P. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil Till. Res. 2013, 130, 91–98. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Rinot, O.; Levy, G.J.; Steinberger, Y.; Svoray, T.; Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total Environ. 2019, 648, 1484–1491. [Google Scholar] [CrossRef]
- Yemefack, M.; Jetten, V.G.; Rossiter, D.G. Developing a minimum data set for characterizing soil dynamics under shifting cultivation systems. Soil Till. Res. 2006, 86, 84–98. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Stellacci, A.M.; Castrignanò, A.; Troccoli, A.; Basso, B.; Buttafuoco, G. Selecting optimal hyperspectral bands to discriminate nitrogen status in durum wheat: A comparison of statistical approaches. Environ. Monit. Assess. 2016, 188, 1–15. [Google Scholar] [CrossRef]
- Pulido Moncada, M.; Gabriels, D.; Cornelis, W.M. Data-driven analysis of soil quality indicators using limited data. Geoderma 2014, 235, 271–278. [Google Scholar] [CrossRef]
- De Paul Obade, V.; Lal, R. A standardized soil quality index for diverse field conditions. Sci. Total Environ. 2016, 541, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Wold, S.; Sjöströma, M.; Lennart, E. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Rencher, A.C. Methods of Multivariate Analysis, 2nd ed.; Brigham Young University: Provo, UT, USA; John Wiley & Sons, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Stellacci, A.M.; Castrignanò, A.; Diacono, M.; Troccoli, A.; Ciccarese, A.; Armenise, E.; Gallo, A.; De Vita, P.; Lonigro, A.; Mastro, M.A.; et al. Combined approach based on principal component analysis and canonical discriminant analysis for investigating hyperspectral plant response. Ital. J. Agron. 2012, 7, 247–253. [Google Scholar] [CrossRef] [Green Version]
- UNESCO FAO. Bioclimatic Map of the Mediterranean Zone; (NS162/III, 22A); UNESCO: Paris, France; FAO: Rome, Italy, 1963; p. 60. [Google Scholar]
- Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy. Eur. J. Agron. 2016, 77, 188–198. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual; Soil Survey Investigations Report No.51, Version 1.0; Burt, R., Ed.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2009.
- Vance, E.D.; Brooks, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Burke, W.; Gabriels, D.; Bouma, J. Soil Structure Assessment; Balkema: Rotterdam, The Netherlands, 1986. [Google Scholar]
- Dane, J.H.; Hopmans, J.W. 3.3. Water Retention and Storage. In Methods of Soil Analysis, Physical Methods; Part 4; Dane, J.H., Topp, G.C., Eds.; John Wiley & Sons: New York, NY, USA, 2002; pp. 671–720. [Google Scholar]
- Castellini, M.; Iovino, M. Pedotransfer functions for estimating soil water retention curve of Sicilian soils. Arch. Agron. Soil Sci. 2019, 65, 1401–1416. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Wander, M.M.; Bollero, G.A. Soil quality assessment of tillage impacts in Illinois. Soil Sci. Soc. Am. J. 1999, 63, 961–971. [Google Scholar] [CrossRef]
- Sharma, K.L.; Mandal, U.K.; Srinivas, K.; Vittal, K.P.R.; Mandal, B.; Grace, J.K.; Ramesh, V. Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil Tillage Res. 2005, 83, 246–259. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van Der Meer, B. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens. Environ. 2004, 91, 354–376. [Google Scholar] [CrossRef]
- Lachenbruch, P.A. Discriminant Analysis; Hafner Publishing: New York, NY, USA, 1975. [Google Scholar]
- Uddin, N. Consumer Credit Customers’ Financial Distress Prediction by Using Two-Group Discriminant Analysis: A Case Study. Int. J. Econ. Financ. 2013, 5, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Uddin, N.; Meah, M.S.; Hossain, R. Discriminant Analysis as an Aid to Human Resource Selection and Human Resource Turnover Minimization Decisions. Int. J. Bus. Manag. 2013, 8, 153–169. [Google Scholar] [CrossRef] [Green Version]
- SAS/STAT Software; Release 9.3; SAS Institute Inc.: Cary, NC, USA, 2012.
- Rosipal, R.; Kramer, N. Overview and Recent Advances in Partial Least Squares. Subspace, Latent Structure and Feature Selection: Statistical and Optimization Perspectives Workshop (SLSFS 2005); Revised Selected Papers (Lecture Notes in Computer Science 3940); Springer: Berlin, Germany, 2006; pp. 34–51. [Google Scholar]
- Colombo, C.; Palumbo, G.; Di Iorio, E.; Sellitto, V.M.; Comolli, R.; Stellacci, A.M.; Castrignanò, A. Soil organic carbon variation in Alpine landscape (Northern Italy) as evaluated by diffuse reflectance spectroscopy. Soil Sci. Soc. Am. J. 2014, 78, 794–804. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Variable selection in regression—A tutorial. J. Chemometr. 2010, 24, 728–737. [Google Scholar] [CrossRef]
- Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chemometr. Intell. Lab. Syst. 2005, 78, 102–112. [Google Scholar] [CrossRef]
- Wold, S. PLS for Multivariate Linear Modeling, QSAR: Chemometric Metods in Molecular Design. In Methods and Principles in Medicinal Chemistry; van de Waterbeemd, H., Ed.; Verlag-Chemie: Weinheim, Germany, 1994. [Google Scholar]
- Castellini, M.; Stellacci, A.M.; Mastrangelo, M.; Caputo, F.; Manici, L.M. Estimating the Soil Hydraulic Functions of Some Olive Orchards: Soil Management Implications for Water Saving in Soils of Salento Peninsula (Southern Italy). Agronomy 2020, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of no-tillage and conventional tillage on physical and hydraulic properties of fine textured soils under winter wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Castellini, M.; Giglio, L.; Modugno, F. Sampled soil volume effect on soil physical quality determination: A case study on conventional tillage and no-tillage of the soil under winter wheat. Soil Syst. 2020, 4, 72. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F. Sustainability of agro-ecological practices in organic horticulture: Yield, energy-use and carbon footprint. Agroecol. Sustain. Food Syst. 2020, 44, 726–746. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Novara, A.; Gristina, L.; Badalucco, L. Soil carbon dynamics as affected by long-term contrasting cropping systems and tillages under semiarid Mediterranean climate. Appl. Soil Ecol. 2014, 73, 140–147. [Google Scholar] [CrossRef]
- Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; de Goede, R. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol. Indic. 2019, 99, 38–50. [Google Scholar] [CrossRef]
- López-Fando, C.; Pardo, M.T. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res. 2009, 104, 278–284. [Google Scholar] [CrossRef]
- Martin-Rueda, I.; Muñoz-Guerra, L.M.; Yunta, F.; Esteban, E.; Tenorio, J.L.; Lucena, J.J. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 2007, 92, 1–9. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Dao, T.H.; Rosolem, C.A. Tillage and phosphorus management effects on enzyme-labile bioactive phosphorus availability in Cerrado Oxisols. Geoderma 2010, 156, 207–215. [Google Scholar] [CrossRef]
- Balota, E.L.; Kanashiro, M.; Colozzi Filho, A.; Andrade, D.S.; Dick, R.P. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Braz. J. Microbiol. 2004, 35, 300–306. [Google Scholar] [CrossRef]
- Pieri, C.J.M.G. Fertility of Soils: A Future for Farming in the West African Savannah; Springer: Berlin, Germany, 1992. [Google Scholar]
- Vilček, J.; Koco, Š. Integrated index of agricultural soil quality in Slovakia. J. Maps 2018, 14, 68–76. [Google Scholar] [CrossRef]
Source of Variation | WEOC mg kg−1 | WEN mg kg−1 | C_biomass mg kg−1 | TOC g kg−1 | TEC g kg−1 | HA_FA g kg−1 | N g kg−1 | P_Olsen mg kg−1 | pH | EC dS m−1 | Ca2+ mg kg−1 | K+ mg kg−1 | Mg2+ mg kg−1 | Na+ mg kg−1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil management (mean) Pr(>F) | 49.351 0.1732 | 25.186 0.0273 * | 491.03 0.8461 | 19.66 0.0325 * | 12.088 0.0415 * | 6.782 0.3280 | 1.470 0.4441 | 54.045 0.4609 | 8.10 0.1674 | 0.139 0.6251 | 6880.9 0.9698 | 1043.89 0.0233 * | 215.84 0.1663 | 29.122 0.1882 |
No-tillage (NT) | 70.44 | 10.11 b | 509.8 | 21.87 a | 13.63 a | 6.23 | 1.52 | 60.72 | 8.07 | 0.14 | 6880.3 | 1120.18 a | 211.65 | 27.87 |
Minimum tillage (MT) | 28.26 | 40.26 a | 472.3 | 17.45 b | 10.54 b | 7.34 | 1.42 | 47.37 | 8.14 | 0.13 | 6881.6 | 967.60 b | 220.03 | 30.37 |
Source of Variation | BD g cm−3 | PMAC cm3 cm−3 | AC cm3 cm−3 | RFC - | Clay g 100 g−1 | Sand g 100 g−1 |
---|---|---|---|---|---|---|
Soil management (mean) | 0.96729 | 0.03329 | 0.08473 | 0.8151 | 48.15 | 11.03 |
Pr(>F) | 0.0316 * | 0.0992 | 0.0370 * | 0.0302 * | 0.1854 | 0.5042 |
No-tillage (NT) | 1.04516 a | 0.00890 | 0.04112 b | 0.90814 a | 45.44 | 11.41 |
Minimum tillage (MT) | 0.90240 b | 0.05362 | 0.12107 a | 0.73764 b | 50.85 | 10.65 |
(a) Eigenvalues of the Correlation Matrix: Total =14 Average = 1 | (b) Eigenvalues of the Correlation Matrix: Total =6 Average = 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Eigenvalue | Difference | Proportion | Cumulative | Eigenvalue | Difference | Proportion | Cumulative | ||
1 | 5.1000 | 2.6932 | 0.3643 | 0.3643 | 1 | 3.7885 | 2.7698 | 0.6314 | 0.6314 |
2 | 2.4068 | 0.7911 | 0.1719 | 0.5362 | 2 | 1.0187 | 0.1054 | 0.1698 | 0.8012 |
3 | 1.6158 | 0.4237 | 0.1154 | 0.6516 | 3 | 0.9133 | 0.6757 | 0.1522 | 0.9534 |
4 | 1.1921 | 0.2644 | 0.0851 | 0.7368 | 4 | 0.2376 | 0.1971 | 0.0396 | 0.993 |
5 | 0.9278 | 0.2123 | 0.0663 | 0.803 | 5 | 0.0404 | 0.0389 | 0.0067 | 0.9998 |
………. |
Eigenvalues of the Correlation Matrix: Total =20 Average = 1 | ||||
---|---|---|---|---|
Eigenvalue | Difference | Proportion | Cumulative | |
1 | 8.2424 | 5.7211 | 0.4121 | 0.4121 |
2 | 2.5213 | 0.3911 | 0.1261 | 0.5382 |
3 | 2.1302 | 0.5153 | 0.1065 | 0.6447 |
4 | 1.6149 | 0.4059 | 0.0807 | 0.7254 |
5 | 1.2089 | 0.2821 | 0.0604 | 0.7859 |
Factor1 | Factor2 | Factor3 | Factor4 | |||||
---|---|---|---|---|---|---|---|---|
WEOC | 54 | * | −22 | 44 | * | 5 | ||
WEN | −77 | * | 4 | −11 | 6 | |||
C_biomass | 32 | 53 | * | 21 | 53 | * | ||
TOC | 91 | * | −29 | 12 | 2 | |||
TEC | 93 | * | −27 | 6 | 15 | |||
HA_FA | −36 | * | −59 | * | 7 | 40 | * | |
N | 36 | * | 7 | 34 | 60 | * | ||
P_Olsen | 33 | −63 | * | −21 | 26 | |||
pH | −70 | * | 52 | * | −14 | −3 | ||
EC | 50 | * | 43 | * | 13 | 42 | * | |
Ca2+ | 2 | 2 | 79 | * | −23 | |||
K+ | 82 | * | −8 | −36 | * | 26 | ||
Mg2+ | −46 | * | −9 | 57 | * | 18 | ||
Na+ | −52 | * | 41 | * | 43 | * | 12 | |
BD | 83 | * | 37 | * | 12 | −12 | ||
PMAC | −84 | * | −34 | * | 16 | 18 | ||
AC | −91 | * | −26 | 8 | 21 | |||
RFC | 92 | * | 27 | −6 | −18 | |||
clay | −43 | * | 45 | * | −10 | 12 | ||
sand | 23 | −21 | 58 | * | −49 | * |
Step | Number | Entered | Removed | Partial | F Value | Pr > F | Wilks’ | Pr < | Average | Pr > |
---|---|---|---|---|---|---|---|---|---|---|
In | R-Square | Lambda | Lambda | Squared | ASCC | |||||
Can Corr | ||||||||||
1 | 1 | TOC | 0.8297 | 97.46 | <0.0001 | 0.17026571 | <0.0001 | 0.82973429 | <0.0001 | |
2 | 2 | RFC | 0.5631 | 24.49 | <0.0001 | 0.07439379 | <0.0001 | 0.92560621 | <0.0001 | |
3 | 3 | WEOC | 0.3941 | 11.71 | 0.003 | 0.0450772 | <0.0001 | 0.9549228 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stellacci, A.M.; Castellini, M.; Diacono, M.; Rossi, R.; Gattullo, C.E. Assessment of Soil Quality under Different Soil Management Strategies: Combined Use of Statistical Approaches to Select the Most Informative Soil Physico-Chemical Indicators. Appl. Sci. 2021, 11, 5099. https://doi.org/10.3390/app11115099
Stellacci AM, Castellini M, Diacono M, Rossi R, Gattullo CE. Assessment of Soil Quality under Different Soil Management Strategies: Combined Use of Statistical Approaches to Select the Most Informative Soil Physico-Chemical Indicators. Applied Sciences. 2021; 11(11):5099. https://doi.org/10.3390/app11115099
Chicago/Turabian StyleStellacci, Anna Maria, Mirko Castellini, Mariangela Diacono, Roberta Rossi, and Concetta Eliana Gattullo. 2021. "Assessment of Soil Quality under Different Soil Management Strategies: Combined Use of Statistical Approaches to Select the Most Informative Soil Physico-Chemical Indicators" Applied Sciences 11, no. 11: 5099. https://doi.org/10.3390/app11115099
APA StyleStellacci, A. M., Castellini, M., Diacono, M., Rossi, R., & Gattullo, C. E. (2021). Assessment of Soil Quality under Different Soil Management Strategies: Combined Use of Statistical Approaches to Select the Most Informative Soil Physico-Chemical Indicators. Applied Sciences, 11(11), 5099. https://doi.org/10.3390/app11115099