Adaptive Model for Biofeedback Data Flows Management in the Design of Interactive Immersive Environments
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Emotions in the Empathy Construct
1.2. Interactivity as One of the Essential Factors for Creating Immersive Environments
1.3. Neuro and Biofeedback Systems
2. Biofeedback for Self-Regulation Training in Adaptive Environments Model
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Biodata as Elements of Interactivity
- The purpose of exposure to the immersive environment.
- The role of the participant.
- Identifying the possible types of reactions.
- The mobility allowed to the participant during the exhibition.
3.2.2. Interactive Immersive Environments
- Brain activity.
- Cardiovascular changes.
- Galvanic skin response.
- Active role.
- During the experiment, an expert monitors the reactions of the participant.
- The experience can be interrupted at any time by the participant’s initiative.
- The expert may interrupt the experiment if he considers that the participant’s reactions endanger safety.
- Sitting on a chair.
- Despite being in a fixed position, the participant can freely move his arms, torso and head in order to explore the surrounding environment.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- da Fonseca, V. Importância das emoções na aprendizagem: Uma abordagem neuropsicopedagógica. Rev. Psicopedag. 2016, 102, 365–384. [Google Scholar]
- de Tommaso, M.; Ricci, K.; Conca, G.; Vecchio, E.; Delussi, M.; Invitto, S. Empathy for pain in fibromyalgia patients: An EEG study. Int. J. Psychophysiol. 2019, 146, 43–53. [Google Scholar] [CrossRef]
- Santamaría-García, H.; Baez, S.; García, A.M.; Flichtentrei, D.; Prats, M.; Mastandueno, R.; Sigman, M.; Matallana, D.; Cetkovich, M.; Ibáñez, A. Empathy for others’ suffering and its mediators in mental health professionals. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Gomes, P.V.; Donga, J.; Marques, A.; Azevedo, J.; Pereira, J. Analysis and definition of data flows generated by bio stimuli in the design of interactive immersive environments. Proceedings 2020, 54, 26. [Google Scholar] [CrossRef]
- Bersak, D.; McDarby, G.; Augenblick, N.; McDarby, P.; McDonnell, D.; McDonald, B.; Karkun, R. Intelligent biofeedback using an immersive competitive environment. Most 2001. [Google Scholar]
- Blumer, H. Symbolic Interactionism: Perspective and Method; University of California Press: Berkeley, CA, USA, 1986. [Google Scholar]
- Jäckel, M. Interaktion. Soziologische Anmerkungen zu einem Begriff. Rundfunk und Fernsehen 1995, 43, 463–476. [Google Scholar]
- Quiring, O.; Schweiger, W. Interactivity: A review of the concept and a framework for analysis. Communications 2008, 33, 147–167. [Google Scholar] [CrossRef] [Green Version]
- Mechant, P.; Van Looy, J. Interactivity. In The Johns Hopkins Guide to Digital Media; Ryan, M.-L., Emerson, L., Robertson, B., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2014; pp. 302–305. [Google Scholar]
- Steuer, J. Defining Virtual Reality: Dimensions Determining Telepresence. J. Commun. 1992, 42, 73–93. [Google Scholar] [CrossRef]
- Ryan, M. Immersion vs. interactivity: Virtual reality and literary theory. Substance 1999, 2, 110–137. [Google Scholar] [CrossRef]
- Sherman, W.R.; Craig, A.B. Understanding Virtual Reality; Elsevier: Cambridge, MA, USA, 2019. [Google Scholar]
- Baker, S.; Waycott, J.; Robertson, E.; Carrasco, R.; Neves, B.B.; Hampson, R.; Vetere, F. Evaluating the use of interactive virtual reality technology with older adults living in residential aged care. Inf. Process. Manag. 2020, 57, 102105. [Google Scholar] [CrossRef]
- Carrasco, R.; Baker, S.; Waycott, J.; Vetere, F. Negotiating stereotypes of older adults through avatars. In Proceedings of the 29th Australian Conference on Computer-Human Interaction, Brisbane, Australia, 28 November—1 December 2017; pp. 218–227. [Google Scholar] [CrossRef]
- Chao, H.; Zhi, H.; Dong, L.; Liu, Y. Recognition of emotions using multichannel EEG data and DBN-GC-based ensemble deep learning framework. Comput. Intell. Neurosci. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Ge, Y. Frontal EEG Asymmetry and middle line power difference in discrete emotions. Front. Behav. Neurosci. 2018, 12, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sá, C.; Gomes, P.V.; Marques, A.; Correia, A. The use of portable EEG devices in development of immersive virtual reality environments for converting emotional states into specific commands. Proceedings 2020, 54, 43. [Google Scholar] [CrossRef]
- Scherer, K.R. What are emotions? And how can they be measured? Soc. Sci. Inf. 2005, 44, 695–729. [Google Scholar] [CrossRef]
- Kim, J.; Schultz, J.; Rohe, T.; Wallraven, C.; Lee, S.-W.; Bülthoff, H.H. Abstract representations of associated emotions in the human brain. J. Neurosci. 2015, 35, 5655–5663. [Google Scholar] [CrossRef] [Green Version]
- Hamann, S. Mapping discrete and dimensional emotions onto the brain: Controversies and consensus. Trends Cogn. Sci. 2012, 16, 458–466. [Google Scholar] [CrossRef]
- Val-Calvo, M.; Álvarez-Sánchez, J.R.; Ferrández-Vicente, J.M.; Díaz-Morcillo, A.; Fernández-Jover, E. Real-time multi-modal estimation of dynamically evoked emotions using EEG, heart rate and galvanic skin response. Int. J. Neural Syst. 2020, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Alazrai, R.; Homoud, R.; Alwanni, H.; Daoud, M.I. EEG-based emotion recognition using quadratic time-frequency distribution. Sens. Switz. 2018, 8, 2739. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Shi, H.; Wang, X.; Huo, S.; Hao, Y.; Wang, B.; Guo, H.; Xiang, J. Hemispheric asymmetry of functional brain networks under different emotions using EEG data. Entropy 2020, 22, 939. [Google Scholar] [CrossRef]
- Paszkiel, S.; Szpulak, P. Methods of acquisition, archiving and biomedical data analysis of brain functioning. In Biomedical Engineering and Neuroscience. BCI 2018. Advances in Intelligent Systems and Computing; Hunek, W., Paszkiel, S., Eds.; Springer: Cham, Switzerland, 2018; Volume 720. [Google Scholar] [CrossRef]
- Marcuse, L.; Fields, M.; Yoo, Y.J. Rowan’s Primer of EEG E-Book, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Paszkiel, S. Using BCI and VR technology in neurogaming. In Econometrics for Financial Applications; Springer Science and Business Media LLC: Cham, Switzerland, 2019; Volume 852, pp. 93–99. [Google Scholar]
- Zhao, M.; Gao, H.; Wang, W.; Qu, J. Research on human-computer interaction intention recognition based on EEG and eye movement. IEEE Access 2020, 8, 145824–145832. [Google Scholar] [CrossRef]
- Paszkiel, S. Augmented reality of technological environment in correlation with brain computer interfaces for control processes. In Recent Advances in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Springer: Cham, Switzerland, 2014; Volume 267, pp. 197–203. [Google Scholar]
- Lindquist, K.A.; Wager, T.D.; Kober, H.; Bliss-Moreau, E.; Barrett, L.F. The brain basis of emotion: A meta-analytic review. Behav. Brain Sci. 2012, 35, 121–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zotev, V.; Phillips, R.; Yuan, H.; Misaki, M.; Bodurka, J. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. NeuroImage 2014, 85, 985–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabcan, J.; Levashenko, V.; Zaitseva, E.; Kvassay, M. Review of methods for EEG signal classification and development of new fuzzy classification-based approach. IEEE Access 2020, 8, 189720–189734. [Google Scholar] [CrossRef]
- Marzbani, H.; Marateb, H.R.; Mansourian, M. Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic Clin. Neurosci. J. 2016, 7, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Orgo, L.; Bachmann, M.; Lass, J.; Hinrikus, H. Effect of negative and positive emotions on EEG spectral asymmetry. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 8107–8110. [Google Scholar] [CrossRef]
- Poole, B.D.; Gable, P.A. Affective motivational direction drives asymmetric frontal hemisphere activation. Exp. Brain Res. 2014, 232, 2121–2130. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, V.; Melo, B.; Basílio, R.; Suo, C.; Yücel, M.; Tierra-Criollo, C.J.; Moll, J. Emotion regulation using virtual environments and real-time fMRI neurofeedback. Front. Neurol. 2018, 9, 390. [Google Scholar] [CrossRef] [PubMed]
- Herwig, U.; Lutz, J.; Scherpiet, S.; Scheerer, H.; Kohlberg, J.; Opialla, S.; Preuss, A.; Steiger, V.; Sulzer, J.; Weidt, S.; et al. Training emotion regulation through real-time fMRI neurofeedback of amygdala activity. NeuroImage 2019, 184, 687–696. [Google Scholar] [CrossRef]
- Batail, J.-M.; Bioulac, S.; Cabestaing, F.; Daudet, C.; Drapier, D.; Fouillen, M.; Fovet, T.; Hakoun, A.; Jardri, R.; Jeunet, C.; et al. EEG neurofeedback research: A fertile ground for psychiatry? Encéphale 2019, 45, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Marín-Morales, J.; Llinares, C.; Guixeres, J.; Alcañiz, M. Emotion recognition in immersive virtual reality: From statistics to affective computing. Sensors 2020, 20, 5163. [Google Scholar] [CrossRef] [PubMed]
- Valenza, G. Interactive Storytelling in a Mixed Reality Environment: The Effects of Interactivity. Sci. Rep. 2018, 8, 1–15. [Google Scholar]
- Baños, R.M.; Botella, C.; Rubió, I.; Quero, S.; García-Palacios, A.; Alcañiz, M. Presence and emotions in virtual environments: The influence of stereoscopy. Cyberpsychol. Behav. 2008, 1, 1–8. [Google Scholar] [CrossRef]
- Peng, H.; Chen, X.; Wang, Z.; Zhu, J.; Zhang, X.; Sun, S.; Li, J.; Huo, X.; Li, X. Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression. IEEE Access 2019, 7, 92630–92641. [Google Scholar] [CrossRef]
- Jebelli, H.; Khalili, M.M.; Lee, S. A continuously updated, computationally efficient stress recognition framework using electroencephalogram (EEG) by applying online multitask learning algorithms (OMTL). IEEE J. Biomed. Heal. Inform. 2019, 23, 1928–1939. [Google Scholar] [CrossRef] [PubMed]
- Schubring, D.; Kraus, M.; Stolz, C.; Weiler, N.; Keim, D.A.; Schupp, H. Virtual reality potentiates emotion and task effects of alpha/beta brain oscillations. Brain Sci. 2020, 10, 537. [Google Scholar] [CrossRef] [PubMed]
- Veloso Gomes, P.; Donga, J.; Sá, V.J. Software requirements definition processes in gamification development for Immersive environments. In Handbook of Research on Solving Modern Healthcare Challenges with Gamification; de Queirós, R.A.P., Marques, A.J., Eds.; IGI Global: Hershey, PA, USA, 2021; pp. 68–78. [Google Scholar]
Equipment | Specifications |
---|---|
Computer | CPU: Intel® Core™ i7-9700K (3.60 GHz–4.90 GHz) Graphic card: NVIDIA® GeForce® RTX 2080 Ti Memory: 64 GB RAM |
VR Headset HTC Vive Pro™ Or Vive Pro Eye™ | High resolution Dual AMOLED 3.5″ diagonal screens 1440 × 1600 pixels per eye (2880 × 1600 pixels combined) Refresh rate: 90 Hz Field of view: 110 degrees Integrated microphones with 3D Spatial Audio Four SteamVR Base Station 2.0: 10 m × 10 m VIVE Wireless Adapter |
Looxid Link™ Mask for VIVE | EEG sensors Looxid Link Hub 6 channels: AF3, AF4, AF7, AF8, Fp1, Fp2 1 reference: FPz at extended 10-10 system Dry electrodes on flexible PCB Sampling rate: 500 Hz Resolution: 24 bits per channel (with 1 LSB = 0.27 μV) Filtering: digital notch filters at 50 Hz and 60 Hz, 1–50 Hz digital bandpass Real-time data access Raw EEG data: 500 Hz (with/without filter options) Feature indexes (alpha, beta, gamma, theta, delta): 10 Hz Mind indexes (attention, relaxation, balance): 10 Hz |
Equipment | BIOPAC™ MP160—Specifications |
---|---|
ECG | Number of Channels: 16 Absolute Maximum Input: ±15 V Operational Input Voltage: ±10 V A/D Resolution: 16 Bits Accuracy (% of FSR): ±0.003 Input impedance: 1.0 MΩ Amplifier Module Isolation: Provided by the MP unit, isolated clean power CE Marking: EC Low Voltage and EMC Directives Leakage current: <8 µA (Normal), <400 µA (Single Fault) Fuse: 2 A (fast blow) |
ECG and Respiratory Amplifier | Transmitter: Ultra-low power 2.4 GHz bi-directional digital RF transmitter Rate: 2 kHz, maximum Screen: Color, 6 cm diagonal RF reception range: 1 m (line of sight, approx.) Memory: 32 GB Built-in Accelerometer: X, Y, Z—axes; rate 100–400 Hz; Range: ±2–16 G |
Plethysmography and galvanic skin response | Signal type: PPG plus EDA Resolution: PPG: FSR/4096, (4.88 mV); EDA: 0.012 μS (min step) Operational range: 10 m Transmitter: Ultra-low power, 2.4 GHz bi-directional digital RF transmitter; Rate: 2.000 Hz (between transmitter and receiver) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, P.V.; Marques, A.; Donga, J.; Sá, C.; Correia, A.; Pereira, J. Adaptive Model for Biofeedback Data Flows Management in the Design of Interactive Immersive Environments. Appl. Sci. 2021, 11, 5067. https://doi.org/10.3390/app11115067
Gomes PV, Marques A, Donga J, Sá C, Correia A, Pereira J. Adaptive Model for Biofeedback Data Flows Management in the Design of Interactive Immersive Environments. Applied Sciences. 2021; 11(11):5067. https://doi.org/10.3390/app11115067
Chicago/Turabian StyleGomes, Paulo Veloso, António Marques, João Donga, Catarina Sá, António Correia, and Javier Pereira. 2021. "Adaptive Model for Biofeedback Data Flows Management in the Design of Interactive Immersive Environments" Applied Sciences 11, no. 11: 5067. https://doi.org/10.3390/app11115067
APA StyleGomes, P. V., Marques, A., Donga, J., Sá, C., Correia, A., & Pereira, J. (2021). Adaptive Model for Biofeedback Data Flows Management in the Design of Interactive Immersive Environments. Applied Sciences, 11(11), 5067. https://doi.org/10.3390/app11115067