X-ray Irradiation-Induced Abnormal Development and DNA Damage in Phthorimaea operculella (Lepidoptera: Gelechiidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Insects
2.2. X-ray Irradiation
2.3. DNA Comet Assays
2.4. Recovery of Damaged DNA
2.5. Statistical Analysis
3. Results
3.1. Effect of X-ray Irradiation on Each Developmental Stages of P. operculella
3.2. Effects of X-ray Irradiation on DNA Damage and Repair
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilboa, S.; Podoler, H. Population dynamics of the potato tuber moth on processing tomatoes in Israel. Entomol. Exp. Appl. 1994, 72, 197–206. [Google Scholar] [CrossRef]
- Kirkham, R. Potatoes. In Horticulture Australia; Coombs, B., Ed.; Khai Wah—Ferco Pty. Ltd.: Singapore, 1995; pp. 250–256. [Google Scholar]
- Van Vuuren, J.J.; Bennett, A.; Bennett, A.L. Oviposition site preferences of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), a pest on tobacco, Nicotiana tabacum L. (Solanaceae). Afr. Entomol. 1998, 6, 177–183. [Google Scholar]
- Rothschild, G.H.L. The potato moth—An adaptable pest of short-term cropping systems. In The Ecology of Exotic Animals and Plants; Kitching, R.L., Ed.; John Wiley: Brisbane, Australia, 1986; pp. 144–462. [Google Scholar]
- Fenemore, P.G. Host-plant location and selection by adult moth, Phthorimaea operculella Zell. (Lepidoptera: Gelechiidae) a review. J. Insect Physiol. 1988, 3, 175–177. [Google Scholar] [CrossRef]
- Gelernter, W.D.; Trumble, J.T. Factors in the success and failure of microbial insecticides in vegetable crops. Integr. Pest. Manage. Rev. 1999, 4, 301–306. [Google Scholar] [CrossRef]
- Jansky, S.H.; Jin, L.P.; Xie, K.Y.; Xie, C.H.; Spooner, D.M. Potato production and breeding in China. Potato Res. 2009, 52, 57–65. [Google Scholar] [CrossRef]
- Rondon, S.I. The potato tuberworm: A literature review of its biology, ecology, and control. Am. J. Potato Res. 2010, 87, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Hanafi, A. Integrated pest management of potato tuber moth in field and storage. Potato Res. 1999, 42, 373–380. [Google Scholar] [CrossRef]
- Jung, J.M.; Lee, S.G.; Kim, K.H.; Jeon, S.W.; Jung, S.; Lee, W.H. The potential distribution of the potato tuber moth (Phthorimaea operculella) based on climate and host availability of potato. Agronomy 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- EPPO. Available online: http://www.eppo.int/MEETINGS/2015_meetings/wp_ppp.htm (accessed on 27 May 2015).
- Heather, N.W.; Hallman, G.J. Pest Management and Phytosanitary Trade Barriers; CABI International: Wallingford, Oxfordshire, UK, 2008; pp. 132–152. [Google Scholar]
- Ibrahim, R.A.; Al-Ahmadi, S.S. Utilization of ozone to control potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae), in storage. Afr. Entomol. 2014, 22, 330–336. [Google Scholar] [CrossRef]
- Follett, P.A. Irradiation to control insects in fruits and vegetables for export from Hawaii. Radiat. Phys. Chem. 2004, 71, 163–166. [Google Scholar] [CrossRef]
- Osouli, S.; Ziale, F.; Nejad, K.H.I.; Moghaddam, M. Appli-cation of gamma irradiation on egg, active and quiescence stages of Tetranycus urticae Koch as a quarantine tretment of cut flower. Radiat. Phys. Chem. 2013, 90, 111–119. [Google Scholar] [CrossRef]
- Moon, S.R.; Son, B.K.; Yang, J.O.; Woo, J.S.; Yoon, C.M.; Kim, G.H. Effect of Electron-beam Irradiation on Development and Reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae. Kor. J. Appl. Entomol. 2010, 49, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.N.; Yoon, S.H.; Shin, Y.H.; Yoon, C.; Woo, J.S.; Kim, G.H. Effect of electron beam irradiation on developmental stages of Plutella xylostella (Lepidoptera: Plutellidae). J. Asia-Pac. Entomol 2011, 14, 243–247. [Google Scholar] [CrossRef]
- Koo, H.N.; Yun, S.H.; Yoon, C.; Kim, G.H. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpetine leafminer, Liriomyza trifolii (Burgess). Radiat. Phys. Chem. 2012, 81, 86–92. [Google Scholar] [CrossRef]
- Yun, S.H.; Kim, M.; Kim, H.; Lee, S.W.; Yoo, D.H.; Kim, H.K.; Koo, H.N.; Kim, G.H. Doses of electron beam and X-ray irradiation for inhibition of development and reproduction in four insect pests. Korean J. Appl. Entomol. 2014, 53, 391–398. [Google Scholar] [CrossRef]
- Kim, J.; Chung, S.O.; Jang, M.; Jang, S.A.; Park, C.G. Developmental inhibition and DNA damage of Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) by gamma radiation. Int. J. Radiat. Biol. 2015, 91, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.H.; Koo, H.N.; Kin, H.K.; Yang, J.O.; Kim, G.H. X-ray irradiation as a quarantine treatment for the control of six insect pests in cut flower boxes. J. Asia-Pac. Entomol 2016, 19, 31–38. [Google Scholar] [CrossRef]
- Cho, W.S.; Koo, H.N.; Yun, S.W.; Lee, J.S.; Jeong, D.H.; Kang, W.J.; Lee, S.J.; Kim, H.K.; Han, J.H.; Kwon, Y.D.; et al. Electron beam-induced sterility and inhibition of ovarian development in the Sakhalin pine longicorn, Monochamus saltuarius (Coleoptera: Cerambycidae). J. Econ. Entomol. 2018, 111, 725–731. [Google Scholar] [CrossRef]
- Koo, H.N.; Yun, S.H.; Kim, H.K.; Kim, G.H. Elucidation of molecular expression associated with abnormal development and sterility caused by electron beam irradiation in Spodoptera litura (F.) (Lepidoptera: Noctuidae). Int. J. Radiat. Biol. 2018, 95, 1–8. [Google Scholar] [CrossRef]
- Cho, S.R.; Koo, H.N.; Shin, S.; Kim, H.K.; Park, J.H.; Yoon, Y.S.; Kim, G.H. Gamma-ray irradiation control of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) and Trialeurodes vaporariorum in the exportation of fresh strawberries. J. Econ. Entomol. 2019, 112, 1611–1617. [Google Scholar] [CrossRef]
- Cho, S.R.; Shin, S.; Ahn, H.; Koo, H.N.; Kim, Y.; Kim, G.H. Control of whitefly (Hemiptera: Aleyrodidae), Trialeurodes vaporariorum, with electron beam and X-ray radiation of fresh strawberries for export. Insects. 2020, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Fei, P.; El-Deiry, W.S. p53 and radiation responses. Oncogene 2003, 22, 5774–5783. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. SAS User’s Guide: Statistics; Version 9.4 ed.; SAS Institute: Cary, NC, USA, 2016. [Google Scholar]
- Kim, J.; Jung, S.O.; Jang, S.A.; Kim, J.; Park, C.G. X-ray radiation and development inhibition of Helicoverpa armigera HÜber (Lepidoptera: Noctuidae). Radiat. Phys. Chem. 2015, 115, 148–152. [Google Scholar] [CrossRef]
- Rananavare, H.D.; Harwalkar, M.R.; Rahalkar, G.W. Influence of modifying factors on induction of sterility and mating ability of potato tuberworm, Phthorimaea operculella (Zeller). J. Nucl. Agric. Biol. 1991, 20, 199–205. [Google Scholar]
- Haiba, I.M. Disinfestation of different varieties of potato naturally or artificially infested by the potato tuber moth, P. operculella Zeller in the storage. J. Arb. Nucl. Sci. Appl. 1994, 27, 31–43. [Google Scholar]
- Saour, G.; Makee, H.; Al-Oudat, M. Susceptibility of potato plants grown from tubers irradiated with stimulation doses of gamma irradiation to potato tuber moth, Phthorimaea operculella Zeller (Lep., Gelechiidae). J. Appl. Entomol. 1999, 123, 159–164. [Google Scholar] [CrossRef]
- Haiba, I.M. Integration of ash and gamma-irradiation for controlling the potato tuber moth, P. operculella Zeller in storage. Bull. Ent. Soc. Egypt, Econ. Ser. 2000, 27, 78–107. [Google Scholar]
- Mahto, R.; Mandal, S.K.; Chakraborty, P. Susceptibility of eggs, larvae and pupae of potato tuber moth, Phthorimaea operculella (Zeller) to ionizing radiation doses used for sprout inhibition in potatoes. J. Entomol. Res. 2012, 36, 201–206. [Google Scholar]
- Hasan, M.M.; Todoriki, S.; Miyanoshita, A.; Imamura, T. Detection of gamma radiation-induced DNA damage in maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) assessed using the comet assay. Int. J. Radiat. Biol. 2008, 84, 815–820. [Google Scholar] [CrossRef]
- Imamura, T.; Todorikia, S.; Sotaa, N.; Nakakitaa, H.; Ikenagaa, H.; Hayashib, T. Effect of “soft-electron” (low-energy electron) treatment on three stored-product insect pests. J. Stored Prod. Res. 2004, 40, 169–177. [Google Scholar] [CrossRef]
- Todoriki, S.M.; Hasan, A.; Miyanoshita, T.; Immamura, T.; Hayashi, T. Assessment of electron beam-induced DNA damage in larvae of chestnut weevil, Curculio sikkimensis (Heller) (Coleoptera: Curculionidae) using comet assy. Radiat. Phys. Chem. 2006, 75, 292–296. [Google Scholar] [CrossRef]
- Yun, S.H.; Koo, H.N.; Kim, H.K.; Cho, S.; Kim, G.H. Effects of electron beam irradiation on six insect pests in different sections of flower boxes for export. J. Asia-Pac. Entomol. 2015, 18, 629–636. [Google Scholar] [CrossRef]
- Kim, J.; Joo, Y.A.; Lee, Y.J.; Kim, J.; Jang, M.; Park, C.G. Small scale-up validation for ionizing radiations against Helicoverpa armigera larvae. J. Asia-Pac. Entomol. 2016, 19, 5–7. [Google Scholar] [CrossRef]
- Park, J.S.; Jeong, S.Y.; Ahn, S.J.; Kim, I. Effects of gamma radiation on different development stages of the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Entomol. Res 2015, 45, 110–115. [Google Scholar] [CrossRef]
Dose | n | Hatchability |
---|---|---|
(Gy) | (%) (Mean ± SD) | |
100 | 800 | - 1 |
70 | 827 | 0.0 ± 0.0 c 2 |
50 | 667 | 0.3 ± 0.3 c |
30 | 832 | 2.3 ± 1.1 c |
10 | 797 | 28.5 ± 1.8 b |
0 | 686 | 98.0 ± 1.3 a |
ED50 (Gy) | - | 6.6 (4.5–8.3) |
ED99 (Gy) | - | 37.0 (27.7–62.6) |
Dose | n | Pupation | Emergence | Larval Period | Mortality |
---|---|---|---|---|---|
(Gy) | (%)(Mean ± SD) | (%)(Mean ± SD) | (day) (Mean ± SD) | (%)(Mean ± SD) | |
150 | 30 | 0.0 ± 0.0 d 1 | 0.0 ± 0.0 c | - 2 | 100.0 ± 0.0 d |
100 | 30 | 6.7 ± 5.8 d | 0.0 ± 0.0 c | 17.7 ± 0.6 b | 93.3 ± 5.8 d |
70 | 30 | 13.3 ± 5.8 d | 0.0 ± 0.0 c | 16.6 ± 1.5 b | 86.7 ± 5.8 d |
50 | 30 | 30.0 ± 0.0 c | 33.3 ± 33.3 bc | 10.9 ± 0.3 a | 70.0 ± 0.0 c |
30 | 30 | 46.7 ± 11.5 b | 66.7 ± 28.9 ab | 9.8 ± 0.2 a | 53.3 ± 11.5 b |
0 | 30 | 100.0 ± 0.0 a | 86.7 ± 15.3 a | 9.4 ± 0.2 a | 0.0 ± 0.0 a |
ED50 (Gy) | 30.3 (24.9–34.8) | 38.8 (33.3–42.7) | - | 74.7 (71.6–78.0) | |
ED99 (Gy) | 174.6 (137.3–252.0) | 88.7 (75.8–118.1) | - | 130.4 (119.1–147.4) |
Dose | n | Pupation | Emergence | Larval Period | Mortality | Adult Longevity |
---|---|---|---|---|---|---|
(Gy) | (%)(Mean ± SD) | (%)(Mean ± SD) | (day)(Mean ± SD) | (%)(Mean ± SD) | (day)(Mean ± SD) | |
150 | 30 | 66.7 ± 5.8bc 1 | 0.0 ± 0.0d | 4.2 ± 0.2b | 33.3 ± 5.8c | - 2 |
100 | 30 | 80.0 ± 10.0b | 22.2 ± 17.9c | 3.4 ± 0.1a | 16.7 ± 5.8b | 3.8 ± 1.3b |
70 | 30 | 86.7 ± 5.8ab | 38.9 ± 14.7bc | 3.2 ± 0.1a | 13.3 ± 5.8b | 8.4 ± 0.8a |
50 | 30 | 100.0 ± 0.0a | 60.0 ± 17.3ab | 3.2 ± 0.1a | 0.0 ± 0.0a | 9.0 ± 0.8a |
30 | 30 | 100.0 ± 0.0a | 83.3 ± 11.5a | 3.1 ± 0.1a | 0.0 ± 0.0a | 9.8 ± 0.5a |
0 | 30 | 100.0 ± 0.0a | 93.3 ± 5.8a | 3.3 ± 0.1a | 0.0 ± 0.0a | 9.9 ± 0.5a |
ED50 (Gy) | 189.6 (160.0–249.1) | 46.8 (43.0–50.4) | - | 194.7 (163.3–259.4) | - | |
ED99 (Gy) | 467.7 (331.0–847.6) | 162.4 (145.6–185.6) | - | 480.4 (336.8–891.2) | - |
Dose | n | Emergence | Adult Longevity | Adult Longevity | No. Eggs | Hatchability |
---|---|---|---|---|---|---|
(Gy) | (%)(Mean ± SD) | (♀, day) (Mean ± SD) | (♂, day) (Mean ± SD) | (♀/total) (Mean ± SD) | (%) (F1) (Mean ± SD) | |
200 | 30 | 0.0 ± 0.0c 1 | - 2 | - | - | - |
150 | 30 | 15.6 ± 12.6c | 2.5 ± 0.2c | 2.4 ± 0.5c | 5.2 ± 1.0b | 0.0 ± 0.0c |
100 | 30 | 42.2 ± 16.8b | 6.5 ± 0.3b | 7.1 ± 0.1b | 9.2 ± 1.3b | 4.5 ± 3.8c |
50 | 30 | 67.8 ± 5.1b | 7.7 ± 0.5b | 9.1 ± 0.6a | 19.2 ± 1.5b | 35.5 ± 4.8b |
0 | 30 | 98.9 ± 1.9a | 9.9 ± 0.3a | 9.4 ± 0.3a | 62.3 ± 4.6a | 99.3 ± 0.5a |
ED50 (Gy) | 73.1 (62.6–82.3) | - | - | - | 41.0 (32.8–44.5) | |
ED99 (Gy) | 200.2 (179.1–231.4) | - | - | - | 145.0 (129.0–167.6) |
Dose | n | Adult Longevity | Adult Longevity | No. Eggs | Hatchability |
---|---|---|---|---|---|
(Gy) | (♀, day) (Mean±SD) | (♂, day) (Mean±SD) | (♀/total) (Mean±SD) | (%)(Mean±SD) | |
200 | 30 | 9.9 ± 0.4a 1 | 9.8 ± 0.2a | 5.3 ± 0.5d | 0.0 ± 0.0c |
150 | 30 | 10.0 ± 0.5a | 9.8 ± 0.4a | 9.4 ± 5.0d | 0.0 ± 0.0c |
100 | 30 | 9.9 ± 0.4a | 9.5 ± 0.2a | 21.0 ± 2.3c | 16.9 ± 7.4b |
50 | 30 | 10.3 ± 0.1a | 10.2 ± 0.4a | 34.7 ± 2.4b | 20.5 ± 1.6b |
0 | 30 | 10.0 ± 0.1a | 9.6 ± 0.2a | 57.5 ± 6.3a | 98.8 ± 1.1a |
ED50 (Gy) | - 2 | - | - | 32.9 (26.0–39.5) | |
ED99 (Gy) | - | - | - | 177.7 (139.8–247.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-R.; Kim, M.; Shin, E.; Kim, H.K.; Koo, H.-N.; Kim, G.-H. X-ray Irradiation-Induced Abnormal Development and DNA Damage in Phthorimaea operculella (Lepidoptera: Gelechiidae). Appl. Sci. 2021, 11, 5068. https://doi.org/10.3390/app11115068
Cho S-R, Kim M, Shin E, Kim HK, Koo H-N, Kim G-H. X-ray Irradiation-Induced Abnormal Development and DNA Damage in Phthorimaea operculella (Lepidoptera: Gelechiidae). Applied Sciences. 2021; 11(11):5068. https://doi.org/10.3390/app11115068
Chicago/Turabian StyleCho, Sun-Ran, Minjun Kim, Eungyeong Shin, Hyun Kyung Kim, Hyun-Na Koo, and Gil-Hah Kim. 2021. "X-ray Irradiation-Induced Abnormal Development and DNA Damage in Phthorimaea operculella (Lepidoptera: Gelechiidae)" Applied Sciences 11, no. 11: 5068. https://doi.org/10.3390/app11115068
APA StyleCho, S.-R., Kim, M., Shin, E., Kim, H. K., Koo, H.-N., & Kim, G.-H. (2021). X-ray Irradiation-Induced Abnormal Development and DNA Damage in Phthorimaea operculella (Lepidoptera: Gelechiidae). Applied Sciences, 11(11), 5068. https://doi.org/10.3390/app11115068