Isolation, Identification and Biotechnological Applications of a Novel, Robust, Free-living Chlorococcum (Oophila) amblystomatis Strain Isolated from a Local Pond
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Sampling and Strain Isolation
2.2. Microscopic Observation and Molecular Identification
2.3. Scale-Up and Biomass Production
2.4. Growth Assessment
2.5. Biochemical Composition
2.6. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characterization
3.2. Molecular Identification and Phylogenetic Analysis
3.3. Scale-Up and Biomass Production
3.4. Biochemical Composition
3.4.1. Proximate Composition
3.4.2. Fatty Acid Profile
3.4.3. Pigment Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guschina, I.A.; Harwood, J.L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 2006, 45, 160–186. [Google Scholar] [CrossRef] [PubMed]
- Guedes, A.C.; Amaro, H.; Malcata, F.X. Microalgae as sources of high added-value compounds-a brief review of recent work. Biotechnol. Prog. 2011, 27, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Guedes, A.C.; Malcata, F.X. Nutritional Value and Uses of Microalgae in Aquaculture. Aquaculture 2012, 390. [Google Scholar] [CrossRef]
- Gouveia, L.; Moura, P.; Reis, A.; Oliveira, C.; Gírio, F. Microalgae for Biofuels: The Portuguese Experience. 2015. Available online: http://www.lneg.pt/iedt/projectos/392/ (accessed on 14 January 2020).
- Borowitzka, M.A.; Moheimani, N.R. Sustainable biofuels from algae. Mitig. Adapt. Strat. Glob. Chang. 2010, 18, 13–25. [Google Scholar] [CrossRef]
- Pandey, A.; Lee, D.J.; Chisti, Y.; Soccol, C.R. Biofuels from Algae; Elsevier Inc.: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.S.; Chang, J.-S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef]
- Ejike, C.E.; Collins, S.A.; Balasuriya, N.; Swanson, A.K.; Mason, B.; Udenigwe, C.C. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci. Technol. 2017, 59, 30–36. [Google Scholar] [CrossRef]
- Pereira, H.; Silva, J.; Santos, T.; Gangadhar, K.N.; Raposo, A.; Nunes, C.; Coimbra, M.A.; Gouveia, L.; Barreira, L.; Varela, J. Nutritional Potential and Toxicological Evaluation of Tetraselmis sp. CTP4 Microalgal Biomass Produced in Industrial Photobioreactors. Molecules 2019, 24, 3192. [Google Scholar] [CrossRef] [Green Version]
- Dionisi, H.; Lozada, M.; Olivera, N.L. Bioprospection of marine microorganisms: Biotechnological applications and methods. Rev. Argent. Microbiol. 2012, 44. [Google Scholar]
- Pereira, H.; Páramo, J.; Silva, J.; Marqués, A.; Barros, A.; Maurício, D.; Santos, T.; Schulze, P.S.; Barros, R.; Gouveia, L.; et al. Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: From an agar plate to 100-m3 industrial photobioreactors. Sci. Rep. 2018, 8, 5112. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.K.; Dasgupta, C.N.; Mishra, S.; Srivastava, M.; Gupta, V.K.; Suseela, M.R.; Ramteke, P.W. Bioprospecting microalgae from natural algal bloom for sustainable biomass and biodiesel production. Appl. Microbiol. Biotechnol. 2019, 103, 5447–5458. [Google Scholar] [CrossRef] [PubMed]
- Parvin, M.; Zannat, M.N.; Habib, M.A.B. Two Important Techniques for Isolation of Microalgae. 2007, Volume 20. Available online: www.asianfisheriessociety.org (accessed on 14 January 2020).
- Pereira, H.; Barreira, L.; Mozes, A.; Florindo, C.; Polo, C.; Vizetto-Duarte, C.; Custódio, L.; Varela, J. Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol. Biofuels 2011, 4, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nylander, J.A.A. MrModeltest v2. Progr Distrib by author. 2004. Available online: https://github.com/nylander/MrModeltest2 (accessed on 7 February 2020).
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). 2003. Available online: http://paup.csit.fsu.edu/ (accessed on 9 February 2020).
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Yang and Rannala. 2001, Volume 17. Available online: http://brahms.biology.rochester.edu/software.html (accessed on 9 February 2020).
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A.J. TRACER v1.6. 2014. Available online: http://beast.bio.ed.ac.uk/Tracer (accessed on 7 February 2020).
- Rambaut, A. FigTree v1.4.2. 2009. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 7 February 2020).
- Callejón-Ferre, Á.J.; Martí, B.V.; López-Martínez, J.; Manzano-Agugliaro, F. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renew. Sustain. Energy Rev. 2011, 15, 948–955. [Google Scholar] [CrossRef]
- Nunez, M.; Quigg, A. Changes in growth and composition of the marine microalgae Phaeodactylum tricornutum and Nannochloropsis salina in response to changing sodium bicarbonate concentrations. J. Appl. Phycol. 2016, 28, 2123–2138. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Lepage, G.; Roy, C.C. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 1984, 25. [Google Scholar]
- Couso, I.; Vila, M.; Vigara, J.; Cordero, B.F.; Vargas, M.Á.; Rodríguez, H.; León, R.; Lianez, I.C. Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. Eur. J. Phycol. 2012, 47, 223–232. [Google Scholar] [CrossRef]
- Bold, H.C.; Parker, B.C. Some supplementary attributes in the classification of chlorococcum species. Arch. Microbiol. 1962, 42, 267–288. [Google Scholar] [CrossRef]
- Watanabe, S.; Lewis, L. Phylogenetic interpretation of light and electron microscopic features of selected members of the phylogroup Moewusinia (Chlorophyceae), with new generic taxonomy. Phycologia 2017, 56, 329–353. [Google Scholar] [CrossRef]
- Bold, H.C. Life History and Cell Structure of Chlorococcum infusionum. Bull. Torrey Bot. Club 1930, 57, 577. [Google Scholar] [CrossRef]
- Temraleeva, A.D.; Moslalenko, S.V. Application of Morphological and Molecular Systematics for Identification of Green Microalgae of the Genus Chlorococcum and Some Closely Related Taxa. Microbiology 2019, 88, 27–38. [Google Scholar] [CrossRef]
- Nema, M.; Hanson, M.L.; Müller, K.M. Phylogeny of the egg-loving green alga Oophila amblystomatis (Chlamydomonadales) and its response to the herbicides atrazine and 2,4-D. Symbiosis 2018, 77, 23–39. [Google Scholar] [CrossRef]
- Lin, Y.; Bishop, C.D. Identification of free-living Oophila amblystomatis (Chlorophyceae) from Yellow Spotted Salamander and Wood Frog breeding habitat. Phycologia 2015, 54, 183–191. [Google Scholar] [CrossRef]
- Cabanelas, I.T.D.; Slegers, P.M.; Böpple, H.; Kleinegris, D.M.M.; Wijffels, R.H.; Barbosa, M. Outdoor performance of Chlorococcum littorale at different locations. Algal Res. 2017, 27, 55–64. [Google Scholar] [CrossRef]
- Quelhas, P.M.; Trovão, M.; Silva, J.T.; Machado, A.; Dos Santos, M.; Pereira, H.; Varela, J.; Simões, M.; Silva, J.L. Industrial production of Phaeodactylum tricornutum for CO2 mitigation: Biomass productivity and photosynthetic efficiency using photobioreactors of different volumes. J. Appl. Phycol. 2019, 31, 2187–2196. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Zhao, X.-Q.; Yen, H.-W.; Ho, S.-H.; Cheng, C.-L.; Lee, D.S.; Bai, F.-W.; Chang, J.-S. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 2013, 78, 1–10. [Google Scholar] [CrossRef]
- Shankar, M.; Chhotaray, P.; Agrawal, A.; Gardas, R.L.; Tamilarasan, K.; Rajesh, M. Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Res. 2017, 25, 228–236. [Google Scholar] [CrossRef]
- Del Río, E.; García-Gómez, E.; Moreno, J.; Guerrero, M.; Garcia-González, M.; Sanchez, E.D.R. Microalgae for oil. Assessment of fatty acid productivity in continuous culture by two high-yield strains, Chlorococcum oleofaciens and Pseudokirchneriella subcapitata. Algal Res. 2017, 23, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A.; Pancha, I.; Jain, D.; Paliwal, C.; Ghosh, T.; Patidar, S.; Bhattacharya, S.; Mishra, S. Fatty acids as biomarkers of microalgae. Phytochemistry 2013, 89, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Deng, Z.; Hu, Z.; Wang, Z.; Fan, L. Characterization of Chlorococcum pamirum as a potential biodiesel feedstock. Bioresour. Technol. 2014, 162, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, G.; Ecker, J. The opposing effects of n−3 and n−6 fatty acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.; Jha, B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 2010, 120, 749–757. [Google Scholar] [CrossRef]
- Connor, W.E. Importance of n-3 fatty acids in health and disease. Am. J. Clin. Nutr. 2000, 71, 171S–175S. [Google Scholar] [CrossRef]
- Mostafa, S. Microalgal Biotechnology: Prospects and Applications. Plant Sci. 2012. [Google Scholar] [CrossRef]
- Harun, R.; Singh, M.; Forde, G.M.; Danquah, M.K. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 2010, 14, 1037–1047. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef] [Green Version]
- Van Ginneken, V.J.; Helsper, J.P.F.G.; De Visser, W.; Van Keulen, H.; A Brandenburg, W. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids Health Dis. 2011, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.-H.; Lee, Y.-K. Secondary carotenoids formation by the green alga Chlorococcum sp. J. Appl. Phycol. 2000, 12, 301–307. [Google Scholar] [CrossRef]
- Balder, H.F.; Vogel, J.; Jansen, M.C.; Weijenberg, M.P.; Westenbrink, S.; Van Der Meer, R.; Goldbohm, R.A.; Brandt, P.A.V.D. Heme and Chlorophyll Intake and Risk of Colorectal Cancer in the Netherlands Cohort Study. Cancer Epidemiol. Biomark. Prev. 2006, 15, 717–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevilla, J.M.F.; Acién, F.G.; Grima, E.M. Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol. 2010, 86, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Tinoco, N.A.B.; Teixeira, C.M.L.L.; De Rezende, C.M. The Genus Dunaliella: Biotechnology and Applications. Rev. Virtual Química 2015, 7, 1421–1440. [Google Scholar] [CrossRef]
- Zhang, D.H.; Ng, Y.K.; Phang, S.M. Composition and accumulation of secondary carotenoids in Chlorococcum sp. J. Appl. Phycol. 1997, 9, 147–155. [Google Scholar] [CrossRef]
- Lorenz, R.; Cysewski, G.R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000, 18, 160–167. [Google Scholar] [CrossRef]
- Yuan, J.-P.; Chen, F.; Liu, X.; Li, X.-Z. Carotenoid composition in the green microalga Chlorococcum. Food Chem. 2002, 76, 319–325. [Google Scholar] [CrossRef]
- Zhang, D.H.; Lee, Y.K. Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. J. Appl. Phycol. 1997, 9, 459–463. [Google Scholar] [CrossRef]
Reactor | Volumetric Productivity (g·L−1·d−1) | Areal Productivity (g·m−2·d−1) | µ (d−1) | PE (%) | ||
---|---|---|---|---|---|---|
Maximum | Global | Maximum | Global | |||
0.25-m3 FP | 0.27 ± 0.02 a | 0.07 ± 0.00 a,b | 22.31 ± 1.50 a | 5.94 ± 0.41 a | 0.16 ± 0.00 a | 0.73 ± 0.02 a |
2.5-m3 PBR | 0.26 ± 0.02 a | 0.09 ± 0.02 a | 26.75 ± 2.47 a | 8.65 ± 1.62 a,b | 0.13 ± 0.03 a | 1.33 ± 0.12 b |
10-m3 PBR | 0.09 ± 0.03 b | 0.05 ± 0.01 b | 36.56 ± 1.52 b | 14.84 ± 3.98 b | 0.16 ± 0.02 a | 1.84 ± 0.18 c |
Reactor | Proteins (%) | Lipids (%) | Carbohydrates (%) | Ashes (%) |
---|---|---|---|---|
2.5-m3 PBR | 55.72 ± 2.85 a | 18.33 ± 0.97 b | 17.43 ± 3.58 a | 9.88 ± 5.87 a |
10-m3 PBR | 48.22 ± 0.43 b | 31.44 ± 4.10 a | 5.78 ± 3.99 b | 15.85 ± 5.00 a |
FAME % | 2.5-m3 PBR | 10-m3 PBR |
---|---|---|
C14:0 | 0.76 ± 0.09 a | 2.88 ± 0.87 b |
C16:4n-3 | 23.65 ± 2.20 a | 21.94 ± 1.87 a |
C16:3n-3 | 4.15 ± 0.40 a | 2.75 ± 0.47 b |
C16:2n-6 | 0.73 ± 0.08 a | 0.90 ± 0.04 a |
C16:1 | 2.59 ± 0.23 a | 2.70 ± 0.59 a |
C16:0 | 15.24 ± 1.60 a | 19.29 ± 0.73 b |
C18:4n-3 | 8.61 ± 1.15 a | 8.83 ± 2.43 a |
C18:3n-3 | 31.40 ± 2.80 a | 27.58 ± 1.18 a |
C18:3n-6 | 3.22 ± 1.26 a | 3.21 ± 0.69 a |
C18:2n-6 | 2.94 ± 0.78 a | 3.75 ± 0.53 a |
C18:1 | 5.34 ± 0.34 a | 6.27 ± 0.76 a |
C18:0 | 1.37 ± 0.56 a | 2.71 ± 1.06 a |
ΣSFA | 17.37 ± 2.42 a | 23.92 ± 3.54 a |
ΣMUFA | 7.93 ± 0.04 a | 8.97 ± 1.35 a |
ΣPUFA | 74.70 ± 2.46 a | 67.10 ± 3.30 b |
Σn-3 | 67.81 | 61.10 |
Σn-6 | 6.89 | 7.86 |
Σn-6/Σn-3 | 0.10 | 0.13 |
PUFA/SFA | 4.30 | 2.81 |
Pigments (mg·g−1) | 2.5-m3 PBR | 10-m3 PBR |
---|---|---|
Neoxanthin | 0.63 ± 0.19 a | 0.14 ± 0.01 b |
Violaxanthin | 0.33 ± 0.07 a | 0.13 ± 0.01 b |
Lutein | 5.37 ± 0.78 a | 2.49 ± 0.09 b |
β-carotene | 1.25 ± 0.14 a | 0.64 ± 0.03 b |
Chlorophyll a and b | 40.24 ± 7.94 a | 19.56 ± 6.84 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, N.; Pereira, H.; Silva, J.T.; Santos, T.; Soares, M.; Sousa, C.B.; Schüler, L.M.; Costa, M.; Varela, J.; Pereira, L.; et al. Isolation, Identification and Biotechnological Applications of a Novel, Robust, Free-living Chlorococcum (Oophila) amblystomatis Strain Isolated from a Local Pond. Appl. Sci. 2020, 10, 3040. https://doi.org/10.3390/app10093040
Correia N, Pereira H, Silva JT, Santos T, Soares M, Sousa CB, Schüler LM, Costa M, Varela J, Pereira L, et al. Isolation, Identification and Biotechnological Applications of a Novel, Robust, Free-living Chlorococcum (Oophila) amblystomatis Strain Isolated from a Local Pond. Applied Sciences. 2020; 10(9):3040. https://doi.org/10.3390/app10093040
Chicago/Turabian StyleCorreia, Nádia, Hugo Pereira, Joana T. Silva, Tamára Santos, Maria Soares, Carolina B. Sousa, Lisa M. Schüler, Margarida Costa, João Varela, Leonel Pereira, and et al. 2020. "Isolation, Identification and Biotechnological Applications of a Novel, Robust, Free-living Chlorococcum (Oophila) amblystomatis Strain Isolated from a Local Pond" Applied Sciences 10, no. 9: 3040. https://doi.org/10.3390/app10093040