Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Sample Preparations
2.3. Characterization Method
3. Results and Discussion
3.1. Morphology and Characteristics
3.2. Thermal Properties of ε-CL-20 Composite Structures
3.3. Phase Transition Stability of ε-CL-20 Composite Structures
3.4. Mechanical Sensitivity of ε-CL-20 Composite Structures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nielsen, A.T. Caged Polynitramine Compound. U.S. Patent No. 5,693,794, 2 December 1997. [Google Scholar]
- Nielsen, A.T. Synthesis of Polynitropolyaza Caged Nitramines; Chemical Propulsion Information Agency: Columbia, MD, USA, 1987. [Google Scholar]
- Simpson, R.L.; Urtiew, P.A.; Ornellas, D.L.; Moody, G.L.; Scribner, K.F.J.; Hoffman, D.M. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos. Pyrotech. 1997, 22, 249–255. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, J.J.; Guo, X.Y.; Jiao, Q.J.; Zhang, J.Y. Effect of addictives on polymorphic transition of epsilon-CL-20 in castable systems. J. Anal. Calorim. 2014, 117, 1001–1008. [Google Scholar] [CrossRef]
- Ghosh, M.; Venkatesan, V.; Mandave, S.; Banerjee, S.; Sikder, N.; Sikder, A.K.; Bhattacharya, B. Probing Crystal Growth of epsilon- and alpha-CL-20 Polymorphs via Metastable Phase Transition Using Microscopy and Vibrational Spectroscopy. Cryst. Growth Des. 2014, 14, 5053–5063. [Google Scholar] [CrossRef]
- Guo, C.; Wang, D.; Gao, B.; Wang, J.; Luo, B.; Yang, G.; Nie, F. Solid–solid phase transition study of ε-CL-20/binder composites. RSC Adv. 2016, 6, 859–865. [Google Scholar] [CrossRef]
- Gump, J.C.; Peiris, S.M. Phase transitions and isothermal equations of state of epsilon hexanitrohexaazaisowurtzitane (CL-20). J. Appl. Phys. 2008, 104, 083509. [Google Scholar] [CrossRef]
- Tian, Q.; Yan, G.; Sun, G.; Huang, C.; Xie, L.; Chen, B.; Huang, M.; Li, H.; Liu, Y.; Wang, J. Thermally Induced Damage in Hexanitrohexaazaisowurtzitane. Cent. Eur. J. Energ. Mater. 2013, 10, 359–369. [Google Scholar]
- Gavezzotti, A.; Simonetta, M. Crystal-Chemistry in Organic-Solids. Chem. Rev. 1982, 82, 1–13. [Google Scholar] [CrossRef]
- Jung, J.W.; Kim, K.J. Effect of Supersaturation on the Morphology of Coated Surface in Coating by Solution Crystallization. Ind. Eng. Chem. Res. 2011, 50, 3475–3482. [Google Scholar] [CrossRef]
- Yang, Z.J.; Ding, L.; Wu, P.; Liu, Y.G.; Nie, F.D.; Huang, F.L. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine-formaldehyde resins with reduced sensitivity. Chem. Eng. J. 2015, 268, 60–66. [Google Scholar] [CrossRef]
- Ma, Z.G.; Gao, B.; Wu, P.; Shi, J.C.; Qiao, Z.Q.; Yang, Z.J.; Yang, G.C.; Huang, B.; Nie, F.D. Facile, continuous and large-scale production of core-shell HMX@TATB composites with superior mechanical properties by a spray-drying process. RSC Adv. 2015, 5, 21042–21049. [Google Scholar] [CrossRef]
- Levitas, V.I.; Henson, B.F.; Smilowitz, L.B.; Asay, B.W. Solid–solid phase transformation via virtual melting significantly below the melting temperature. Phys. Rev. Lett. 2004, 92, 235702. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Ballmer, S.G.; Gillis, E.P.; Fujii, S.; Schmidt, M.J.; Palazzolo, A.M.E.; Lehmann, J.W.; Morehouse, G.F.; Burke, M.D. Synthesis of many different types of organic small molecules using one automated process. Science 2015, 347, 1221–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.Y.; Zhang, P.; Xu, J.J.; Wang, Z.H.; Jiao, Q.J. Research on the Mechanism and Kinetics of Polymorphic Transitions of epsilon-CL-20 in Composite Systems. Cent. Eur. J. Energ. Mater. 2015, 12, 689–702. [Google Scholar]
- Liu, Y.; Li, S.C.; Wang, Z.S.; Xu, J.J.; Sun, J.; Huang, H. Thermally Induced Polymorphic Transformation of Hexanitrohexaazaisowurtzitane (HNIW) Investigated by in-situ X-ray Powder Diffraction. Cent. Eur. J. Energ. Mater. 2016, 13, 1023–1037. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Guo, X.-Y.; Jiao, Q.-J.; Zhang, P. Phase transitions of epsilon-HNIW in compound systems. AIP Adv. 2016, 6, 055016. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Xiao, C.; Li, S.B.; Luo, G. Bioinspired Fabrication of Insensitive HMX Particles with Polydopamine Coating. Propellants Explos. Pyrotech. 2016, 41, 1092–1097. [Google Scholar] [CrossRef]
- Shang, K.; Song, S.Y.; Cheng, Y.P.; Guo, L.L.; Pei, Y.X.; Lv, X.M.; Aastrup, T.; Pei, Z.C. Fabrication of Carbohydrate Chips Based on Polydopamine for Real-Time Determination of Carbohydrate-Lectin Interactions by QCM Biosensor. Polymers 2018, 10, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postma, A.; Yan, Y.; Wang, Y.J.; Zelikin, A.N.; Tjipto, E.; Caruso, F. Self-Polymerization of Dopamine as a Versatile and Robust Technique to Prepare Polymer Capsules. Chem. Mater. 2009, 21, 3042–3044. [Google Scholar] [CrossRef]
- Nie, C.X.; Yang, Y.; Cheng, C.; Ma, L.; Deng, J.; Wang, L.R.; Zhao, C.S. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Acta Biomater. 2017, 51, 479–494. [Google Scholar] [CrossRef]
- Nie, C.X.; Cheng, C.; Peng, Z.H.; Ma, L.; He, C.; Xia, Y.; Zhao, C.S. Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: Bactericidal activity and mammal cell toxicity. J. Mater. Chem. B 2016, 4, 2749–2756. [Google Scholar] [CrossRef]
- Jiang, J.H.; Zhu, L.P.; Zhu, L.J.; Zhu, B.K.; Xu, Y.Y. Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir 2011, 27, 14180–14187. [Google Scholar] [CrossRef] [PubMed]
- He, G.S.; Yang, Z.J.; Pan, L.P.; Zhang, J.H.; Liu, S.J.; Yan, Q.L. Bioinspired interfacial reinforcement of polymer based energetic composites with a high loading of solid explosive crystals. J. Mater. Chem. A 2017, 5, 13499–13510. [Google Scholar] [CrossRef]
- Gong, F.Y.; Zhang, J.H.; Ding, L.; Yang, Z.J.; Liu, X.B. Mussel-inspired coating of energetic crystals: A compact core-shell structure with highly enhanced thermal stability. Chem. Eng. J. 2017, 309, 140–150. [Google Scholar] [CrossRef]
- Lin, C.M.; Gong, F.Y.; Yang, Z.J.; Pan, L.P.; Liu, S.J.; Li, J.; Guo, S.Y. Bio-inspired fabrication of core@shell structured TATB/polydopamine microparticles via in situ polymerization with tunable mechanical properties. Polym. Test. 2018, 68, 126–134. [Google Scholar] [CrossRef]
- Li, Y.B.; Yang, Z.J.; Zhang, J.H.; Pan, L.P.; Ding, L.; Tian, X.; Zheng, X.; Gong, F.Y. Fabrication and characterization of HMX@TPEE energetic microspheres with reduced sensitivity and superior toughness properties. Compos. Sci. Technol. 2017, 142, 253–263. [Google Scholar] [CrossRef]
- Li, M.; Huang, M.; Kang, B.; Wen, M.P.; Li, H.Z.; Xu, R. Quality evaluation of RDX crystalline particles by confined quasi-static compression method. Propellants Explos. Pyrotech. 2007, 32, 401–405. [Google Scholar]
- Young, R.A. The Rietveld Method; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- National Military Standard of China. Experimental Methods of Sensitivity and Safety; GJB/772A-97; National Defense Science Technology and Industry Comission Press: Beijing, China, 1997. (In Chinese) [Google Scholar]
- Zangmeister, R.A.; Morris, T.A.; Tarlov, M.J. Characterization of Polydopamine Thin Films Deposited at Short Times by Autoxidation of Dopamine. Langmuir 2013, 29, 8619–8628. [Google Scholar] [CrossRef]
- Lin, C.M.; Gong, F.Y.; Yang, Z.J.; Zhao, X.; Li, Y.B.; Zeng, C.C.; Li, J.; Guo, S.Y. Core-Shell Structured HMX@Polydopamine Energetic Microspheres: Synergistically Enhanced Mechanical, Thermal, and Safety Performances. Polymers 2019, 11, 568. [Google Scholar] [CrossRef] [Green Version]
- Gong, F.Y.; Yang, Z.J.; Qjan, W.; Liu, Y.; Zhang, J.H.; Ding, L.; Lin, C.M.; Zeng, C.C.; Yan, Q.L. Kinetics for Inhibited Polymorphic Transition of HMX Crystal after Strong Surface Confinement. J. Phys. Chem. C 2019, 123, 11011–11019. [Google Scholar] [CrossRef]
- Dartyge, B.F. Influence of crystal defects on sensitivity of explosives. In Proceedings of the 10th International Detonation Symposium, Boston, MA, USA, 12–16 June 1993; p. 816. [Google Scholar]
Sample | ε-CL-20 Content (wt %) | Content (wt %) |
---|---|---|
epsilon-CL-20 (ε-CL-20) | 100 | 0 |
ε-CL-20/polydopamine (PDA) | 98.4 | 1.6 |
ε-CL-20/poly-L-dopamine (PLD) | 99.3 | 0.7 |
ε-CL-20/poly-norepinephrine (PNE) | 98.7 | 1.3 |
ε-CL-20/poly-6-hydroxydopamine (POHDA) | 98.6 | 1.4 |
Sample | C1s (%) | N1s (%) | O1s (%) | N/C |
---|---|---|---|---|
ε-CL-20 | 32.76 | 34.68 | 32.56 | 1.06 |
PDA | 72.38 | 8.21 | 19.41 | 0.11 |
PLD | 63.29 | 8.45 | 28.26 | 0.13 |
PNE | 67.24 | 8.2 | 24.56 | 0.12 |
POHDA | 67.72 | 8.08 | 24.2 | 0.12 |
ε-CL-20/PDA | 46.33 | 23.83 | 29.84 | 0.51 |
ε-CL-20/PLD | 39.8 | 27.78 | 32.42 | 0.70 |
ε-CL-20/PNE | 41.58 | 26.29 | 32.13 | 0.63 |
ε-CL-20/POHDA | 44.89 | 24.66 | 30.45 | 0.55 |
Sample | Endothermic Peak | |||
---|---|---|---|---|
To (°C) | Tp (°C) | Te (°C) | ∆H (Jg−1) | |
ε-CL-20 | 144.5 | 156.3 | 171.4 | −41.3 |
ε-CL-20/PDA | 172.3 | 179 | 187.1 | −28.1 |
ε-CL-20/PLD | 157.6 | 165.3 | 174.7 | −35.8 |
ε-CL-20/PNE | 164.8 | 172.5 | 184.5 | −32.9 |
ε-CL-20/POHDA | 173.4 | 176 | 185.2 | −30.4 |
Sample | Impact Sensitivity (H50, cm) | Friction Sensitivity (P, %) |
---|---|---|
ε-CL-20 | 13 ± 1 | 96 |
ε-CL-20/PDA | 12 ± 1 | 48 |
ε-CL-20/PLD | 13 ± 1 | 60 |
ε-CL-20/PNE | 14 ± 1 | 60 |
ε-CL-20/POHDA | 12 ± 1 | 56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Jiao, Q.; Zhao, W.; Guo, X.; Li, D.; Sun, X. Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites. Appl. Sci. 2020, 10, 2663. https://doi.org/10.3390/app10082663
Zhang H, Jiao Q, Zhao W, Guo X, Li D, Sun X. Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites. Applied Sciences. 2020; 10(8):2663. https://doi.org/10.3390/app10082663
Chicago/Turabian StyleZhang, Honglei, Qingjie Jiao, Wanjun Zhao, Xueyong Guo, Dayong Li, and Xiaole Sun. 2020. "Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites" Applied Sciences 10, no. 8: 2663. https://doi.org/10.3390/app10082663
APA StyleZhang, H., Jiao, Q., Zhao, W., Guo, X., Li, D., & Sun, X. (2020). Enhanced Crystal Stabilities of ε-CL-20 via Core-Shell Structured Energetic Composites. Applied Sciences, 10(8), 2663. https://doi.org/10.3390/app10082663