
polymers

Article

Core-Shell Structured HMX@Polydopamine Energetic
Microspheres: Synergistically Enhanced Mechanical,
Thermal, and Safety Performances

Congmei Lin 1,2 , Feiyan Gong 1,*, Zhijian Yang 1,* , Xu Zhao 1 , Yubin Li 1,
Chengcheng Zeng 1, Jiang Li 2 and Shaoyun Guo 2

1 Institute of Chemical Material, China Academy of Engineering Physics, Mianyang 621900, China;
lincmei2009@caep.cn (C.L.); xuzhao@caep.cn (X.Z.); liyubin030102@caep.cn (Y.L.);
zengcc1314@caep.cn (C.Z.)

2 The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan
University, Chengdu 610065, China; li_jiang@scu.edu.cn (J.L.); nic7702@scu.edu.cn (S.G.)

* Correspondence: freya@caep.cn (F.G.); zhijianyang@caep.cn (Z.Y.)

Received: 25 February 2019; Accepted: 19 March 2019; Published: 26 March 2019
����������
�������

Abstract: The solid–solid phase transition, poor mechanical properties, and high sensitivity has
impeded further practical applications of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) based polymer
bonded explosives (PBXs). To address these issues together, a facile and effective route was
employed to achieve a coating of polydopamine (PDA) on the surface of explosive crystals via in situ
polymerization of dopamine. Additionally, PBXs based on HMX@PDA microcapsules were prepared
with a fluoropolymer as polymer binder. Improved storage modulus, static mechanical strength
and toughness, and creep resistance has been achieved in as-prepared PDA modified PBXs. The β-δ
phase transition temperature of as-obtained PBXs based on conventional HMX (C-HMX)@PDA was
improved by 16.3 ◦C. The friction sensitivity of the C-HMX based PBXs showed a dramatic drop after
the PDA coating. A favorable balance proposed in this paper among thermal stability, mechanical
properties, and sensitivity was achieved for C-HMX based PBXs with the incorporation of PDA.

Keywords: bio-inspired interfaces; mechanical properties; thermal stability; sensitivity

1. Introduction

Energetic materials (EMs) contain high chemical energy, in which organic small molecular crystals
act as functional materials. For decades, they have attracted increasing interest for their significant
applications in both military and civil fields. Among them, 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX)
and HMX-based formulations have been extensively studied, due to the high detonation energy and
high melting point [1,2]. However, the high sensitivity towards external mechanical stimuli, phase
transition under thermal insult, and poor mechanical properties induced by weak adhesive properties
with polymer binder are main shortcomings which limit its applications.

Several strategies have been established to desensitize HMX, including preparing HMX with
higher crystal quality by recrystallization [3], designing energetic cocrystals [4], synthesizing
HMX@insensitive explosive core-shell microparticles [5,6], and coating the HMX crystal with polymers
via in situ polymerization [7]. However, the energetic cocrystals and core-shell microparticles which
combine the HMX with large amounts of insensitive explosive reduce the energy output. Due to
the difficulty in controlling the mass transfer, the polymer binder cannot be completely coated onto
explosive crystals at the large-scale production by the in situ polymerization.

Another limitation for the application of HMX energetic crystal is that it undergoes a solid–solid
β-δ phase transition under thermal shock, which is harmful for the long-term storage and transportation
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of materials. Solid–solid phase transition causes expansion [8] and extensive microstructural damage [9],
such as mesoscale evolution of voids and porosity, which tend to act as hot spots under external impact
or shock, making the heated HMX based explosives more sensitive [10,11]. So far, coating approaches
have been mainly developed to tune the phase transition temperature of the explosives [12]. Additives
of TATB and olefin in high concentration can form compact coatings on the HMX crystals to delay the
nucleations of δ-HMX and build up a heat conduction obstacle, leading to a higher temperature required
for the β-δ phase transition [13]. The phase transition of HMX explosives can be greatly improved
after core-shell coating of melamine-formaldehyde resin, with the appreciable increment of more than
16 ◦C [7]. However, the high concentration of shell materials is necessary to completely coat explosive
crystals. In contrast, fewer additives lead to larger free surface area of HMX, which accelerates the phase
transition [13]. Furthermore, solid–solid phase transition of explosive crystals depends on the chemical
interaction between explosives and binders, which may promote or delay the phase transition [14].

Polymer bonded explosives (PBXs) are typical polymer-based energetic composites with a high
loading of solid explosive crystals. The mechanical properties of PBX composites are determined in part
by the chemical structure and bonding at the interface between constituents in the microstructure [15].
Mechanical failure paths tend to primarily run around the interface between crystals and the binder
matrix and avoid regions of fine filler and binder [16]. This can lead to materials with abundant
cracks, which is harmful for the safety and reliability of the explosive. Considerable efforts have
been undertaken to increase the interfacial interaction and mechanical properties of HMX and
HMX-based composites. A common and convenient method is the addition of neutral polymer
bonding agent (NPBA) to achieve interfacial reinforcement [17]. In situ polymerization of hydroxyethyl
acrylate-acrylate-acrylonitrile copolymer and isophorone diisocyanate is also applied to the coating
on HMX surfaces [18]. It is shown that forming a cross-linked polymeric coating on HMX plays
a role for interfacial reinforcement between HMX fillers and polymeric binders, resulting in a 21%
increase of the tensile strength. Another technique is the fabrication of core-shell microparticles, such
as HMX@nano-TATB composites [19]. It significantly changes the surface morphology of HMX and
the interface adhesion state between particles and polymer binder, resulting in the enhancement of
mechanical properties. Among them, it is still a big challenge to precisely control the surface structure
and morphology for the application of NPBA and in situ polymerization. Besides, the production scale
of HMX@nano-TATB core-shell particles is difficult to amplify for engineering applications, due to the
extraordinary low solubility of TATB in common solvents.

Up until now, mussel-inspired coating with the in-situ polymerization of dopamine has raised
increasing interest and has been frequently used to coat various substrates, such as glass, metal,
polymer, and nanocarbon materials [20–28]. Recently, there have been some reports on the application
of dopamine chemistry to energetic crystal processing, such as HMX, hexanitrohexaazaisowurtzitane
(CL-20), and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) [29–31]. It has been found that in situ
polymerization of dopamine can provide a facile and versatile method for modifying the surfaces
of energetic crystals. However, little work has been done to explore the application of well-coated
energetic crystals in PBXs and its effects on the comprehensive performance.

The balance among the explosive performances, including the sensitivity, thermal stability, and
mechanical properties of the energetic material, is fraught with challenges. Such three performances
of PBX often constrain each other, and it is very difficult to synergistically improve. Therefore, novel
techniques to acquire better balance and super comprehensive performance should be explored.
The strong chemical adhesion to form the robust and compact core-shell structure and high rigidity of
polydopamine (PDA) enables it to provide a great potential to efficiently reduce the sensitivity and
improve the thermal stability and mechanical properties of energetic materials without a sacrifice of
detonation power. In this work, we demonstrate a facile in situ polymerization approach to synthesize
core-shell microparticles with a high-energy HMX core and a PDA shell. Then, the polymer binder was
added to further coat HMX@PDA microspheres and prepare PBXs. The crystal quality and particle
size of HMX crystals are varied to study their effects on the thermal and mechanical behavior of PBXs.
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Additionally, the amount of PDA in core-shell microparticles is varied to investigate the dependence
of the comprehensive properties on the degree of coating.

2. Experimental Section

2.1. Materials

Three kinds of HMX were used, including a conventional one of industrial grade (C-HMX)
and two recrystallized samples with reduced sensitivity (RS-HMX). The C-HMX was purchased
(Baiyin Chemical Industry Co., Ltd., Baiyin, China) and used without further purification. RS-HMX
with fine and large grains were marked as FRS-HMX and LRS-HMX, respectively. Dopamine and
(hydroxymethyl)aminomethane (Tris) were obtained from Sigma-Aldrich (St. Louis, MI, USA) and
used as received. Ultrapure water with a resistivity of 18.2 MΩ·cm was prepared with a Milli-Q
apparatus (Millipore, Billerica, MA, USA). A vinylidene fluoride (VDF) and chlorotrifluoroethylene
(CTFE) copolymer provided by Zhonghao Chenguang Chemical Industry Co., Ltd. (Zigong, China)
was used as polymer binders.

2.2. Sample Preparations

The preparation of core-shell structured HMX@PDA and PBX composites are illustrated in
Figure 1. The PDA-coated HMX were synthesized as follows: Tris solution (10 mM) was prepared and
adjusted to pH of 8.5 by HCl solution. 100 g HMX crystals were added to 3000 mL Tris solution and
dispersed under high-intensity ultrasonic irradiation for 5 min. Then, 6 g dopamine was added to
the suspension whilst stirring at room temperature. After filtering and washing with a large quantity
of ultrapure water several times to remove excessive PDA in the solution, the PDA-coated HMX
particles were obtained by drying at 60 ◦C in a vacuum oven. In this paper, samples were denoted
as xHMX@PDA-yh, where x represented the HMX particle type and y represented the PDA coating
time. For example, C-HMX@PDA-3h represented the matrix was C-HMX and the corresponding PDA
coating time was 3 h.Polymers 2018, 10, x FOR PEER REVIEW  4 of 15 
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Figure 1. Proposed schematic preparation procedure and enhancement mechanism for polydopamine
(PDA) modified polymer bonded explosives (PBXs).

The molding powders of various PBX formulations were prepared by water suspension method.
For distinguishing purposes, PBX based on C-HMX, FRS-HMX, and LRS-HMX were labeled as
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PBX-C-yh, PBX-F-yh, and PBX-L-yh, respectively, where y represented PDA coating time. For instance,
PBX-C-3h represented PBX based on the C-HMX with the corresponding PDA coating time of 3 h.
The obtained molding powders were then dried in a vacuum oven at 60 ◦C for 48 h. To test the
mechanical and creep properties of the PBXs, the molding powders were pressed in a mold and
transformed into explosive pellets with a given geometrical shape.

2.3. Material Characterizations

The coating content of the PDA shell was quantitatively analyzed by a high-performance liquid
chromatography (HPLC, Agilent, Santa Clara, CA, USA). The morphologies and structures of various
HMX@PDA samples were characterized by matching refractive index (OMMRI), scanning electron
microscopy (SEM, Zeiss, Oberkochen, Germany), X-ray photoelectron energy spectrum (XPS, Thermo
Fisher Scientific, Waltham, MA, USA), laser particle size analyzer (LPSA, Beckman Coulter, Brea,
CA, USA), Fourier-transform infrared spectra (FT-IR, Thermo Fisher Scientific, Waltham, MA, USA),
Raman spectra (Renishaw, Gloucestershire, UK), and X-ray diffraction (XRD, Bruker, Karlsruhe,
Germany). The thermal properties of the HMX and corresponding PBXs were analyzed by using
a differential scanning calorimeter (DSC, Mettler, Zurich, Swiss). The mechanical reinforcement
effect of PDA on various HMX and PBX composites was investigated by compressive stiffness tests
(CST), dynamic mechanical analysis (DMA), creep, Brazilian, and compression tests. The mechanical
sensitivity measurements were conducted according to GJB-772A-97 standard method 601.2 and
602.1 [32]. Detailed characterization methods and processes are shown in Electronic Supplementary
Information (ESI).

3. Results and Discussion

3.1. Morphological and Structural Features of Core-Shell HMX@PDA Particles

The morphologies of three HMX raw crystals are exhibited in Figure S1 in ESI. RS-HMX crystals
possessed a more regular diamond-like shape, less internal defects, and a narrower particle size
distribution than that of C-HMX. The amount of PDA for core-shell HMX@PDA can be tuned by
simply varying the coating time (Table S1 in ESI). With increased coating time, the white HMX crystals
gradually changed from gray to thick brown with increasing PDA coating amount (Figure S2 in
ESI). The average particle size of C-HMX, FRS-HMX, and LRS-HMX was 47.0, 44.8, and 149.1 µm,
respectively. Compared with the raw materials, the average particle size for the FRS-HMX@PDA
became smaller, suggesting the better dispersion of the particle powders due to the PDA coating.

The surface morphologies of the raw HMX materials and PDA coated HMX crystals were
investigated in detail using SEM measurements, as shown in Figure 2. The surface morphologies of
the C-HMX and FRS-HMX crystals exhibited ignorable change after PDA modification. It may be
attributable to the difference in surface features and specific surface area. However, the color change of
C-HMX and FRS-HMX crystals with the polymerization time was similar to that of LRS-HMX@PDA
composites (Figure S2 in ESI). The white HMX crystals gradually changed from pale brown to a deep
brown with the increase of PDA contents. Furthermore, the resistance ability to electron beams was
also gradually increased, as examined by the C-HMX crystals. Neat HMX was sensitive to electron
beams and a lot of cracks were observed on the crystal surface. With a uniform and compact PDA
coating shell, the amount of cracks on the crystal surface gradually relieved, indicating that the PDA
coating could enhance the high power electron beam bombardment resistance of HMX. The influences
of electron beam time on the evolution of surface morphology for C-HMX@PDA-9h composites were
also investigated and depicted in Figure S3 in ESI. Undistinguishable cracks could be observed after
exposing C-HMX@PDA-9h under electron beam for 3 min, which could be possibly attributed to the
protection of PDA.

In addition, the surface of LRS-HMX crystals was smooth, while LRS-HMX@PDA was observed
as a relatively rough surface made up of compact and continuous PDA shell. It can be seen from
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Figure 2 that more PDA particles and a thicker PDA coating layer formed on the LRS-HMX surface
with the processing time increasing from 3 to 6 h, building up a uniform and compact shell. Moreover,
PDA agglomeration could be obviously observed on the LRS-HMX surface when the reaction time
increased to 9 h.
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Figure 2. SEM micrographs of the structure morphologies for different HMX and PDA coated specimens.

A core-etching technique was introduced, using acetone as the etching solvent. SEM characterization
of the indiscerptible PDA shells was carried out and the results are also shown in Figure 2, exhibiting
a hollow PDA shell structure of HMX@PDA after the etching treatment. The PDA shell maintained the
shape of the HMX crystal, with the inner surface reflecting the roughness of interface between PDA and
HMX. The shape of particles of C-HMX samples was irregular with a rough surface, while a relatively
smooth surface for RS-HMX can be obtained. Furthermore, for core-shell samples, the thickness of PDA
shell was at nano scale, depending on the HMX matrix.

Element states on the surface of energetic microcapsules could be conducted by XPS analyses [33].
The C 1s, O 1s, and N 1s spectra for FRS-HMX, PDA, and various FRS-HMX@PDA samples are shown
in Figure 3. The characteristic peaks of C 1s, O 1s, and N 1s spectra for HMX and PDA were in
accordance with the results of the previous reports [5,34]. The corresponding functional groups of
PDA coated composites are marked in Figure 3.

According to quantitative analysis, the surface element composition of FRS-HMX, PDA, and
FRS-HMX@PDA composites are listed in Table S2 in ESI. The coating efficiency of PDA can be also
estimated from XPS results by the change of N/C ratio. The N/C ratio on the surface of FRS-HMX@PDA
composites was gradually close to that of PDA, indicating the successful surface modification by PDA.
With the increase in polymerization time from 3 to 9 h, the decrease in N/C ratio from 0.485 to
0.287 indicated the gradual deposition of PDA content on the surface of microcapsules. XPS atomic
concentration of functional groups in all atoms of HMX, PDA, and HMX@PDA are summarized in
Table S3 in ESI. The concentration ratios of C–NH–C group (in PDA)/NO2 group (in FRS-HMX) from N
1s spectrum were 0.21, 0.40, and 0.58 for FRS-HMX@PDA-3h, FRS-HMX@PDA-6h, FRS-HMX@PDA-9h
composites, respectively. The results indicated a successful coating of PDA on the FRS-HMX step
by step. Hence, the perfect core-shell structure of HMX@PDA microcapsules was further confirmed
by XPS.

The crystal structures were further investigated by Raman spectrum, X-ray diffractometry (XRD)
patterns, and Fourier-transform infrared (FT-IR) spectra. After surface modification by dopamine
solution, a new absorption signal from Raman spectrum in Figure S4a appeared at 1580–1700 cm−1,
which can be attributable to the typical feature of G bands in PDA [35]. In Figure S4b, all diffraction
peaks of HMX and HMX/PDA can be indexed to β-HMX (JCPDS card No. 42-1768), indicating
the polymorph nature of the crystals did not change. FT-IR results in Figure S4c indicated that the
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PDA coated composites displayed a combination of the characteristic peaks of the functional groups
in HMX [36] and PDA [37]. In addition, the values of the initial secant modulus (ISM) calculated
according to Ref. [38] were dependent on the PDA content (Figure S4d and Table S1 in ESI). Due
to the enhancement of the density of cross-linked network, the ISM of these core-shell HMX@PDA
composites increased with increasing the content of PDA.Polymers 2018, 10, x FOR PEER REVIEW  6 of 15 
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3.2. Detonation Properties of PBXs Based on HMX@Polydopamine

According to the Urizar equation, the detonation velocity of composites explosive (D) could be
calculated by:

wi =
Vi

∑ Vi
(1)



Polymers 2019, 11, 568 7 of 14

D = ∑ wiDi (2)

where Vi denotes the volume of component i, wi is the volume fraction of component i, and Di is the
characteristic detonation velocity of component i, respectively. The characteristic detonation velocity
for HMX and insensitive materials (PDA and fluoropolymer) are about 9150 and 5400 m/s, respectively.
In order to maintain detonation performance unchanged, the mass fraction of HMX in the formulation
remained a certain value of 95%. The calculated theoretical detonation velocity is listed in Table S4.
It can be found that the difference of detonation velocity of all the formulations was less than 0.32%.

3.3. Mechanical Properties of PBXs Based on HMX@Polydopamine

Figure S5 reflects the dependence of the dynamic mechanical properties, including storage
modulus (E’) and loss factor (tan δ) on the temperature for PDA modified PBXs. With the incorporation
of PDA, the value of storage modulus was improved due to the enhanced interface. An inflexion,
corresponding to the Tg of corresponding fluoropolymer binders [39], could be observed in the loss
factor curves between 45–75 ◦C for the PBXs.

Static compressive and Brazilian tests were also conducted to analyze the effect of PDA
modification on the mechanical properties of PBXs. Representative mechanical characteristics were
summarized in Figure 4 and Table S4 in ESI, indicating an obvious enhanced mechanical property after
PDA modification. Generally, the compressive and tensile strength and elongation at break were higher
than the corresponding samples without PDA coating, suggesting a reinforcing and toughening role of
PDA in PBX. The compressive fracture energy (Wc) and the tensile fracture energy (Wt), obtained by
the integration of the stress–strain curves, could be used to characterize the toughness of explosive
materials. PBXs with a PDA polymerization time of 6 h presented optimal mechanical properties.
PBX-C-6h, PBX-F-6h, and PBX-L-6h composites showed 40.1%, 17.4%, and 38.4% improvement in Wt

compared to the corresponding pristine PBX-C, PBX-F, and PBX-L samples, respectively.
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Figure 4. The typical mechanical response at room temperature for PDA modified PBXs: 
compressive test (a) (c) (e); Brazilian test (b) (d) (f). 
Figure 4. The typical mechanical response at room temperature for PDA modified PBXs: compressive
test (a,c,e); Brazilian test (b,d,f).

Consequently, creep analysis was applied to analyze the effects of PDA content on the non-linear
viscoelastic properties for PBXs. As shown in Figure 5, the introduction of PDA significantly decreased
the creep strain at low temperatures (30 and 45 ◦C) and prolonged the creep failure time at high
temperatures (60 and 80 ◦C), illustrating the reinforcing effect of PDA on the creep resistance of the
materials. Obviously, PBXs with PDA polymerization time of 6 h exhibited an excellent improvement
in creep resistance, which agreed with the above dynamic and static mechanical results. It can be
associated with the significant improvement interfacial interaction between HMX crystals and polymer
binders, achieved by the incorporation of PDA, and thus restriction of the mobility of polymer chains.Polymers 2018, 10, x FOR PEER REVIEW  9 of 15 

 

 
Figure 5. Time-dependent creep strain of PBXs at different temperatures under 4 MPa: (a) PDA 
modified PBX-C, (b) PDA modified PBX-F, (c) PDA modified PBX-L. 

3.4. Mechanism for the Enhancement of Mechanical Properties 

To summarize the synthetic procedure of PDA shell and enhancement mechanism in PBXs, a 
schematic mechanism was proposed in Figure 1. The gradual in situ polymerization of dopamine 
was coated or deposited on the HMX crystal surface. Sufficient noncovalent interactions, including 
π–π stacking, charge transfer, and hydrogen bonding between the N–O groups in the HMX 
molecules and the catechol groups in the PDA chains, were carried out between the PDA and HMX 
crystals [32]. Subsequently, the compact and uniform PDA shell was formed to give core-shell 
energetic microcapsules. 

As the polymer binder was added, the PDA layer acted as an interfacial platform to construct a 
bridge between HMX and fluoropolymer. Sufficient interaction, including hydrogen bonding 
interactions and other interactions, would be carried out between the PDA molecules and HMX 
explosives. The supramolecular interactions, such as hydrogen bonding etc., could contribute to and 
be important interaction mechanisms between PDA and fluoropolymers. The hydrogen bonds with 
the OH groups as proton donors and F groups in the fluoropolymer chains as proton acceptors 
constructed a physical cross-linking network [40]. As a result, PDA formed multiple interfacial 
interactions with HMX crystal and fluoropolymer binders to modify mechanical behavior. 

3.5. Thermal Properties of PBXs Based on HMX@Polydopamine 

Figure 6 and Table S5 in ESI show the DSC results of PDA modified HMX-based PBXs. The DSC 
curve of PBX-C displayed an endothermic peak at 201.5 °C and an exothermic peak at 286.4 °C, 
corresponding to the β-δ phase transition and the thermal decomposition of HMX, respectively. The 
thermal decomposition temperature of HMX for the PDA modified PBXs was almost the same as 
that for the original PBX material. Notably, the polymorphic phase transition peaks shifted 
increasingly to 206.0, 209.0, and 217.8 °C for the PDA modified PBX-C samples with PDA coating for 
3, 6, and 9 h. 

Figure 5. Time-dependent creep strain of PBXs at different temperatures under 4 MPa: (a) PDA
modified PBX-C, (b) PDA modified PBX-F, (c) PDA modified PBX-L.

3.4. Mechanism for the Enhancement of Mechanical Properties

To summarize the synthetic procedure of PDA shell and enhancement mechanism in PBXs,
a schematic mechanism was proposed in Figure 1. The gradual in situ polymerization of dopamine
was coated or deposited on the HMX crystal surface. Sufficient noncovalent interactions, including
π–π stacking, charge transfer, and hydrogen bonding between the N–O groups in the HMX
molecules and the catechol groups in the PDA chains, were carried out between the PDA and HMX
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crystals [32]. Subsequently, the compact and uniform PDA shell was formed to give core-shell
energetic microcapsules.

As the polymer binder was added, the PDA layer acted as an interfacial platform to construct
a bridge between HMX and fluoropolymer. Sufficient interaction, including hydrogen bonding
interactions and other interactions, would be carried out between the PDA molecules and HMX
explosives. The supramolecular interactions, such as hydrogen bonding etc., could contribute to and
be important interaction mechanisms between PDA and fluoropolymers. The hydrogen bonds with the
OH groups as proton donors and F groups in the fluoropolymer chains as proton acceptors constructed
a physical cross-linking network [40]. As a result, PDA formed multiple interfacial interactions with
HMX crystal and fluoropolymer binders to modify mechanical behavior.

3.5. Thermal Properties of PBXs Based on HMX@Polydopamine

Figure 6 and Table S5 in ESI show the DSC results of PDA modified HMX-based PBXs. The DSC
curve of PBX-C displayed an endothermic peak at 201.5 ◦C and an exothermic peak at 286.4 ◦C,
corresponding to the β-δ phase transition and the thermal decomposition of HMX, respectively.
The thermal decomposition temperature of HMX for the PDA modified PBXs was almost the same as
that for the original PBX material. Notably, the polymorphic phase transition peaks shifted increasingly
to 206.0, 209.0, and 217.8 ◦C for the PDA modified PBX-C samples with PDA coating for 3, 6, and 9 h.Polymers 2018, 10, x FOR PEER REVIEW  10 of 15 
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The phase transition behavior of core-shell structured HMX@PDA microcapsules without polymer
binder were also studied by DSC analysis to further reveal the phase transition mechanism of PDA
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modified PBXs. Corresponding results and peak data were demonstrated in Figure S6 and Table S6
in ESI. Compared with the naked C-HMX, the phase transition peak of PBX-C with fluoropolymer
as polymer binder showed a slight shift to lower temperature, indicating the unconspicuous role
of fluoropolymer towards the phase transition. The phase transition temperature increased with
increasing PDA content for core-shell HMX@PDA samples, revealing the enhanced polymorph
stability of C-HMX explosives by core-shell coating with PDA. C-HMX@PDA-9h sample exhibited an
appreciable increment of temperature peaks by more than 30 ◦C. Some interesting phenomena were
found for PDA modified RS-HMX-based PBXs. Even when the phase transition temperature of HMX
for RS-HMX@PDA microcapsules was shifted to ~220 ◦C, the phase transition temperatures of HMX
in PDA modified RS-HMX-based PBXs showed negligible retardation compared with the original
RS-HMX-based PBXs.

The difference of coverage degree between the C-HMX@PDA and RS-HMX@PDA composites
(Figure 2) could be used to better understand the relationship between the coating structure and
thermal phase transition properties of HMX@PDA composites. According to a lattice Monte Carlo
simulation, it was found that the morphology of the filler surface was one of the primary factors which
influenced the interactions at the interface of polymer matrix-filler particle [41]. PBX was a typical
particle-filled polymer-based composite with a high loading of solid explosive crystals. Consequently,
the geometry of the energetic crystal surface played a crucial role in determining the interfacial
interactions. Besides, compared with the smooth surface of RS-HMX, the rough surface of C-HMX
formed an “interlocking block” [40] with PDA to enhance the interfacial interaction.

To further study the relationship between the structure evolvement during the water suspension
process and the phase transition of HMX, the effects of solvent, temperature, and stirring on coverage
degree of HMX@PDA composites were investigated. As shown in Figure S7 in ESI, after immersion
in the ethyl acetate/butyl acetate solvent or water for 1 h or dried in a vacuum oven at 70 ◦C for 1 h,
no distinct difference on the morphology of HMX@PDA composites could be observed, indicating
slight influences of solvent, water, and temperature on as-obtained core-shell structure. However,
after stirring in the water for 1 h, the surface of HMX@PDA composites cracked. Compared with
C-HMX@PDA-9h, stirring could lead to void in the surface of RS-HMX@PDA-9h tending towards
both a larger size and higher void concentration. The slight destruction of core-shell structure for
C-HMX@PDA-9h after granulation caused the phase transition temperatures of HMX in PBXs to
decrease, compared with that of the C-HMX@PDA microcapsules. The high destruction of the
core-shell structure during granulation was the main course of no change in the phase transition
temperatures of HMX in PDA modified RS-HMX-based PBXs, compared with raw HMX.

3.6. Sensitivity Study of PBXs Based on HMX@Polydopamine

The results of impact and friction sensitivity studies of the PDA modified PBXs are summarized
in Table 1. The impact sensitivity of PDA modified PBXs remained consistent with raw PBXs (100%),
which can be attributed to the following reasons. Firstly, crystal defects were usually responsible for
the impact sensitivity, which was enhanced by the growth of hot-spots that originated from crystal
defects during impact and adiabatic compression [42]. PDA coating did not change the amounts of
defects. Generally, soft coating was helpful to insensitive design by absorbing the impact energy to
reduce hot-spots formation. PDA coating was not soft enough to make a difference. Secondly, heat
absorbing materials such as wax can alleviate the hot-spots formation during impact, but PDA was
not heat absorbing material. Based on these reasons, PDA coating had no effect on hot-spots formation
and impact sensitivity.

As shown in Table 1, the friction sensitivity of PDA modified PBXs varied with the crystal quality
and particle size of the HMX crystal, depending on the interfaces interaction intension. The introduction
of PDA coating had led to more insensitive composites than the original PBX-C. The friction sensitivity
of PBX-C-9h samples decreased to 40%, compared with that of the original PBX-C (84%). The same level
of sensitivity had been measured for PBX-F samples with and without PDA coating (about 30%). Similar
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results have been found for the PBX-L used in this study, with a friction sensitivity of 100%. In the friction
sensitivity test, the ignition mechanism was a viscous heating of explosive material subjected to extreme
velocity gradients as the explosive was violently deformed between the rigid surfaces [43]. This viscous
heating mechanism depended on the explosive/polymers interfaces interaction intension. A larger
surface roughness of C-HMX benefited a stronger PDA coating; as a result, their interfacial interaction
intension was higher than that between PDA coating and RS-HMX, with a smaller surface roughness.
The SEM images showed that the PDA coating was damaged in the RS-HMX@PDA coating system
during the granulation process, while no similar result was observed in the C-HMX@PDA coating
system. One can conclude that PDA benefited the C-HMX/fluoropolymer system as a desensitizer,
and not for other systems. A similar example was reported by Bazaki [44]. The catalysts they added
in ammonium perchlorate (AP) were responsible for the friction sensitivity by accelerating the AP
decomposition, but not responsible for the fall hammer sensitivity.

Table 1. Impact and friction sensitivities for conventional HMX/fluoropolymer (PBX-C), PDA modified
conventional HMX/fluoropolymer with in situ polymerization of dopamine for 9h (PBX-C-9h), fine
and high quality HMX/fluoropolymer (PBX-F) and its coating system (PBX-F-9h), large and high
quality HMX/fluoropolymer (PBX-L) and its coating system (PBX-L-9h).

Sample Impact Sensitivity [%] Friction Sensitivity [%]

PBX-C 96 84
PBX-C-9h 100 40

PBX-F 100 32
PBX-F-9h 100 28

PBX-L 100 100
PBX-L-9h 92 100

4. Conclusions

In conclusion, PDA coated HMX crystals were synthesized via a facile in situ polymerization
of dopamine on the surface of HMX. A compact and uniform PDA coating shell was confirmed by
in-depth observation of SEM, XPS, XRD, FT-IR spectra, and Raman spectrum. The core-shell structured
HMX@PDA microcapsules were applied to construct PBX with the addition of fluoropolymer.
The interface adherence between the HMX crystals and fluoropolymer binder was strengthened
with the incorporation of PDA due to the formation of hydrogen bonds and other supramolecular
interactions, including π–π stacking and charge transfer. The mechanical properties of as-fabricated
HMX@PDA based PBXs showed improved storage modulus, the mechanical strength and toughness,
as well as creep resistance. Additionally, the β-δ phase transition temperature of the explosives could
be visibly increased by 16.3 ◦C, attributing to the fact that the rigid PDA shell acted as an armature
to protect the HMX crystal. The friction sensitivity could be reduced from 84% to 40% for C-HMX
based PBXs with PDA coating. Taking into consideration these results, the preparation of explosive
composites with core-shell structure by bio-inspired PDA material provided an effective route for
simultaneously boosting mechanical enhancement, thermal stability improvement, and sensitivity
reduction of high explosives.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/3/568/s1,
Figure S1: OMMRI micrographs of the structure morphologies for different HMX specimens: (a) C-HMX;
(b) FRS-HMX; (c) LRS-HMX, Figure S2: Photos of HMX crystals and HMX@PDA composites, Figure S3: The
influence of electron beam on the evolution of surface morphology for C-HMX@PDA-9h composites, Figure
S4: Characterization of the uncoated HMX crystals and HMX@PDA microparticles: (a) Raman spectra, (b) XRD
patterns, (c) FT-IR spectra, and (d) curves of uniaxial stress vs compressive rate, Figure S5: Storage modulus
(a) and tanδ (b) as a function of temperature for PDA modified PBXs, Figure S6: DSC curves of HMX@PDA
microcapsules, Figure S7: The evolvement in the surface morphology of HMX@PDA microcapsules subjected
to solvent, temperature, stirring and water. The solvent was the mixture of ethyl acetate and butyl acetate, and
the temperature used is 70 ◦C, Table S1: The parameters for three types of HMX and HMX@PDA composites,
Table S2: Surface element composition of FRS-HMX, PDA, and FRS-HMX @PDA composites as determined
by XPS, Table S3: XPS atomic concentration of functional groups in C, O, N atoms of FRS-HMX, PDA, and
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FRS-HMX@PDA composites, Table S4: Detonation and mechanical characteristics of the PDA modified PBXs,
Table S5: Thermal analysis data of the PDA modified PBXs, Table S6: Thermal analysis data of HMX crystals and
HMX@PDA microparticles.

Author Contributions: Conceptualization, J.L. and S.G.; Data curation, Y.L.; Investigation, F.G.; Project
administration, Z.Y.; Writing—original draft, C.L.; Writing—review & editing, X.Z. and C.Z.

Funding: This work was supported by the National Natural Science Foundation of China (51703211, 21875232,
21875229, 21875230, 11502243, 11502245, 11702266, 11702267) and the Presidential Foundation of CAEP
(YZJJLX2016005).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yan, Q.L.; Zeman, S.; Elbeih, A. Recent advances in thermal analysis and stability evaluation of insensitive
plastic bonded explosives (PBXs). Thermochim. Acta 2012, 537, 1–12. [CrossRef]

2. Li, Y.B.; Yang, Z.J.; Zhang, J.H.; Pan, L.P.; Ding, L.; Tian, X.; Zheng, X.; Gong, F.Y. Fabrication and
characterization of HMX@TPEE energetic microspheres with reduced sensitivity and superior toughness
properties. Compos. Sci. Technol. 2017, 142, 253–263. [CrossRef]

3. Lin, C.M.; Liu, J.H.; He, G.S.; Yang, Z.J.; Pan, L.P.; Liu, S.J.; Li, J.; Guo, S.Y. Effect of crystal quality and
particle size of HMX on the creep resistance for TATB/HMX composites. Propellants Explos. Pyrotech. 2017,
42, 1410–1417. [CrossRef]

4. Wei, C.X.; Huang, H.; Duan, X.H.; Pei, C.H. Structures and properties prediction of HMX/TATB co-crystal.
Propellants Explos. Pyrotech. 2011, 36, 416–423. [CrossRef]

5. Huang, B.; Hao, X.F.; Zhang, H.B.; Yang, Z.J.; Ma, Z.G.; Li, H.Z.; Nie, F.D.; Huang, H. Ultrasonic
approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity.
Ultrason. Sonochem. 2014, 21, 1349–1357. [CrossRef] [PubMed]

6. Ma, Z.G.; Gao, B.; Wu, P.; Shi, J.C.; Qiao, Z.Q.; Yang, Z.J.; Yang, G.C.; Huang, B.; Nie, F.D. Facile, continuous
and large-scale production of core-shell HMX@TATB composites with superior mechanical properties by
a spray-drying process. RSC Adv. 2015, 5, 21042–21049. [CrossRef]

7. Yang, Z.J.; Ding, L.; Wu, P.; Liu, Y.G.; Nie, F.D.; Huang, F.L. Fabrication of RDX, HMX and CL-20
based microcapsules via in situ polymerization of melamineformaldehyde resins with reduced sensitivity.
Chem. Eng. J. 2015, 268, 60–66. [CrossRef]

8. Xue, C.; Sun, J.; Kang, B.; Liu, Y.; Liu, X.; Song, G.; Xue, Q. The β-δ phase transition and thermal expansion
of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Propellants Explos. Pyrotech. 2010, 35, 333–338. [CrossRef]

9. Willey, T.M.; Lauderbach, L.; Gagliardi, F.; Buuren, T.; Glascoe, E.A.; Tringe, J.W.; Lee, J.R.I.; Springer, H.K.;
Ilavsky, J. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during
heating through the β-δ phase transition. J. Appl. Phys. 2015, 118, 055901. [CrossRef]

10. Risse, B.; Schnell, F.; Spitzer, D. Synthesis and desensitization of nano-beta-HMX. Propellants Explos. Pyrotech.
2014, 39, 397–401. [CrossRef]

11. Urtiew, P.A.; Forbes, J.W.; Tarver, C.M.; Vandersall, K.S.; Garcia, F.; Greenwood, D.W.; Hsu, P.C.;
Maienschein, J.L. Shock sensitivity of LX-04 containing delta phase HMX at elevated temperatures. AIP Conf.
Proc. 2004, 706, 1053–1056.

12. Yang, Z.J.; Li, J.S.; Huang, B.; Liu, S.J.; Huang, Z.; Nie, F.D. Preparation and properties study of core-shell
CL-20/TATB composites. Propellants Explos. Pyrotech. 2014, 39, 51–58. [CrossRef]

13. Dai, X.G.; Xu, J.J.; Wen, Y.S.; Li, Y.B.; Huang, F.L.; Li, M.; Zeng, Q. Delay mechanism of β-δ phase transition
of cyclotetramethylene tetranitramine in polymer bonded explosive composites by heat conduction obstacle.
Propellants Explos. Pyrotech. 2016, 41, 637–640. [CrossRef]

14. Guo, C.P.; Wang, D.J.; Gao, B.; Wang, J.; Luo, B.; Yang, G.C.; Nie, F.D. Solid-solid phase transition study of
ε-CL-20/binder composites. RSC Adv. 2016, 6, 859–865. [CrossRef]

15. Yeager, J.D.; Dubey, M.; Wolverton, M.J.; Jablin, M.S.; Majewski, J.; Bahr, D.F.; Hooks, D.E. Examining
chemical structure at the interface between a polymer binder and a pharmaceutical crystal with neutron
reflectometry. Polymer 2011, 52, 3762–3768. [CrossRef]

16. Rae, P.J.; Palmer, S.J.P.; Goldrein, H.T.; Field, J.E.; Lewis, A.L. Quasi-static studies of the deformation and
failure of PBX-9501. Proc. R. Soc. A 2002, 458, 2227–2242. [CrossRef]

http://dx.doi.org/10.1016/j.tca.2012.03.009
http://dx.doi.org/10.1016/j.compscitech.2017.02.017
http://dx.doi.org/10.1002/prep.201700153
http://dx.doi.org/10.1002/prep.201000022
http://dx.doi.org/10.1016/j.ultsonch.2014.02.010
http://www.ncbi.nlm.nih.gov/pubmed/24613468
http://dx.doi.org/10.1039/C4RA16527F
http://dx.doi.org/10.1016/j.cej.2015.01.024
http://dx.doi.org/10.1002/prep.200900036
http://dx.doi.org/10.1063/1.4927614
http://dx.doi.org/10.1002/prep.201300161
http://dx.doi.org/10.1002/prep.201300018
http://dx.doi.org/10.1002/prep.201500218
http://dx.doi.org/10.1039/C5RA20867J
http://dx.doi.org/10.1016/j.polymer.2011.06.031
http://dx.doi.org/10.1098/rspa.2002.0967


Polymers 2019, 11, 568 13 of 14

17. Liu, J.H.; Liu, S.J.; Chen, L.L.; Lin, C.M.; Gong, F.Y.; Nie, F.D. Improving mechanical property of HMX-based
PBX with neutral polymer bonding agent. In Proceedings of the 45nd Interational Annual Conference of the
Fraunhofer ICT, Karlsruhe, Germany, 24–27 June 2014; pp. 56/1–56/8.

18. Ma, F.G.; Wu, W.H.; Tan, H.M. Coating modification of nirtramine HMX by polymerization and its
application. J. Beijing Inst. Technol. 2000, 20, 389–393.

19. Liu, J.H.; Li, H.Z.; Huang, B.; Ding, L.; Liu, S.J.; Liu, Y.G. The effects of HMX@TATB core-shell composites on
the mechanical properties of PBX. New Trends Res. Energetic Mater. Czech Republic 2016, 19, 154–159.

20. Postma, A.; Yan, Y.; Wang, Y.; Zelikin, A.N.; Tjipto, E.; Carus, F. Self-polymerization of dopamine as a versatile
and robust technique to prepare polymer capsules. Chem. Mater. 2009, 21, 3042–3044. [CrossRef]

21. Zhang, J.; Hwang, J.; Antonietti, M.; Schmidt, B.V.K.J. Water-in-water pickering emulsion stabilized by
polydopamine particles and cross-linking. Biomacromolecules 2019, 20, 204–211. [CrossRef]

22. Shang, K.; Song, S.; Cheng, Y.; Guo, L.; Pei, Y.; Lv, X.; Aastrup, T.; Pei, Z. Fabrication of carbohydrate chips
based on polydopamine for real-time determination of carbohydrate–lectin interactions by QCM biosensor.
Polymers 2018, 10, 1275. [CrossRef]

23. Guo, J.; Tardy, B.L.; Christofferson, A.J.; Dai, Y.; Richardson, J.J.; Zhu, W.; Hu, M.; Ju, Y.; Cui, J.;
Dagastine, R.R.; et al. Modular assembly of superstructures from polyphenol-functionalized building
blocks. Nat. Nanotechnol. 2016, 11, 1105–1111. [CrossRef] [PubMed]

24. Ran, J.; Wang, C.; Zhang, J.; Wang, W.; Xiao, L.; Jia, S.; Wang, Z.; Wu, W.; Xiao, J. New insight into
polydopamine@ZIF-8 nanohybrids: A zinc-releasing container for potential anticancer activity. Polymers
2018, 10, 476. [CrossRef]

25. Zhao, X.; Wang, H.E.; Chen, X.X.; Cao, J.; Zhao, Y.D.; Neale, Z.G.; Cai, W.; Sui, J.H.; Cao, G.Z. Tubular MoO2

organized by two-dimensional assemblies for fast and durable alkali-ion storage. Energy Storage Mater. 2018,
11, 161–169. [CrossRef]

26. Wei, Q.; Zhang, F.; Li, J.; Li, B.; Zhao, C. Oxidant-induced dopamine polymerization for multifunctional
coatings. Polym. Chem. 2010, 1, 1430–1433. [CrossRef]

27. Nie, C.; Yang, Y.; Cheng, C.; Ma, L.; Deng, J.; Wang, L.; Zhao, C. Bioinspired and biocompatible carbon
nanotube-Ag nanohybrid coatings for robust antibacterial applications. Acta Biomater. 2017, 51, 479–494.
[CrossRef]

28. Nie, C.; Cheng, C.; Peng, Z.; Ma, L.; He, C.; Xia, Y.; Zhao, C. Mussel-inspired coatings on Ag
nanoparticle-conjugated carbon nanotubes: Bactericidal activity and mammal cell toxicity. J. Mater. Chem. B
2016, 4, 2749–2756. [CrossRef]

29. Gong, F.Y.; Zhang, J.H.; Ding, L.; Yang, Z.J.; Liu, X.B. Mussel-inspired coating of energetic crystals: A compact
core-shell structure with highly enhanced thermal stability. Chem. Eng. J. 2017, 309, 140–150. [CrossRef]

30. Zhu, Q.; Xiao, C.; Li, S.B.; Luo, G. Bioinspired fabrication of insensitive HMX particles with polydopamine
coating. Propellants Explos. Pyrotech. 2016, 41, 1092–1097. [CrossRef]

31. Lin, C.M.; Gong, F.Y.; Yang, Z.J.; Pan, L.P.; Liu, S.J.; Li, J.; Guo, S.Y. Bio-inspired fabrication of core-shell
structured TATB/polydopamine microparticles via in situ polymerization with tunable mechanical
properties. Polym. Test. 2018, 68, 126–134. [CrossRef]

32. National Military Standard of China. Experimental Methods of Sensitivity and Safety; GJB/772A-97; National
Defense Science Technology and Industry Comission Press: Beijing, China, 1997. (In Chinese)

33. Zhao, X.; Cai, W.; Yang, Y.; Song, X.; Neale, Z.; Wang, H.; Sui, J.; Cao, G. MoSe2 nanosheets perpendicularly
grown on graphene with Mo-C bonding for Sodium-ion capacitors. Nano Energy 2018, 47, 224–234. [CrossRef]

34. Zangmeister, R.A.; Morris, T.A.; Tarlov, M.J. Characterization of polydopamine thin films deposited at short
times by autoxidation of dopamine. Langmuir 2013, 29, 8619–8628. [CrossRef]

35. Yu, X.; Fan, H.; Liu, Y.; Shi, Z.; Jin, Z. Characterization of carbonized polydopamine nanoparticles suggests
ordered supramolecular structure of polydopamine. Langmuir 2014, 30, 5497–5505. [CrossRef] [PubMed]

36. Soni, P.; Sarkar, C.; Tewari, R.; Sharma, T.D. HMX polymorphs: Gamma to beta phase transformation.
J. Energy Mater. 2011, 29, 261–279. [CrossRef]

37. Jiang, J.H.; Zhu, L.P.; Zhu, L.J.; Zhu, B.K.; Xu, Y.Y. Surface characteristics of a self-polymerized dopamine
coating deposited on hydrophobic polymer films. Langmuir 2011, 27, 14180–14187. [CrossRef]

38. Li, M.; Huang, M.; Kang, B.; Wen, M.P.; Li, H.Z.; Xu, R. Quality evaluation of RDX crystalline particles by
confined quasi-static compression method. Propellants Explos. Pyrotech. 2007, 32, 401–405.

http://dx.doi.org/10.1021/cm901293e
http://dx.doi.org/10.1021/acs.biomac.8b01301
http://dx.doi.org/10.3390/polym10111275
http://dx.doi.org/10.1038/nnano.2016.172
http://www.ncbi.nlm.nih.gov/pubmed/27723730
http://dx.doi.org/10.3390/polym10050476
http://dx.doi.org/10.1016/j.ensm.2017.10.010
http://dx.doi.org/10.1039/c0py00215a
http://dx.doi.org/10.1016/j.actbio.2017.01.027
http://dx.doi.org/10.1039/C6TB00470A
http://dx.doi.org/10.1016/j.cej.2016.10.020
http://dx.doi.org/10.1002/prep.201600021
http://dx.doi.org/10.1016/j.polymertesting.2018.03.046
http://dx.doi.org/10.1016/j.nanoen.2018.03.002
http://dx.doi.org/10.1021/la400587j
http://dx.doi.org/10.1021/la500225v
http://www.ncbi.nlm.nih.gov/pubmed/24773501
http://dx.doi.org/10.1080/07370652.2010.523756
http://dx.doi.org/10.1021/la202877k


Polymers 2019, 11, 568 14 of 14

39. Lin, C.M.; Liu, S.J.; Huang, Z.; He, G.S.; Gong, F.Y.; Liu, Y.G.; Liu, J.H. The dependence of the non-linear creep
properties of TATB-based polymer bonded explosives on the molecular structure of the polymer binder: (II)
effects of the comonomer ratio in fluoropolymers. RSC Adv. 2015, 5, 59804–59811. [CrossRef]

40. He, G.S.; Yang, Z.J.; Pan, L.P.; Zhang, J.H.; Liu, S.J.; Yan, Q.L. Bioinspired interfacial reinforcement of
polymerbased energetic composites with a high loading of solid explosive crystals. J. Mater. Chem. A 2017, 5,
13499–13510. [CrossRef]

41. Feng, J.; Venna, S.R.; Hopkinson, D.P. Interactions at the interface of polymer matrix-filler particle composites.
Polymer 2016, 103, 189–195. [CrossRef]

42. Dartyge, B.F. Influence of crystal defects on sensitivity of explosives. In Proceedings of the 10th International
Detonation Symposium, Boston, MA, USA, 12–16 June 1993; p. 816.

43. Asay, B.W.; Dickson, P.M.; Henson, B.; Fugard, C.; Funk, D.J.; Idar, D.J. Dynamic measurement of the
influence of projectile radius and velocity on strain localization during impact of an energetic material.
In Proceedings of the 11th International Detonation Symposium, Snowmass Village, CO, USA, 31 August–4
September 1998; pp. 781–787.

44. Bazaki, H.; Kubota, N. Friction sensitivity mechanism of ammonium perchlorate composite propellants.
Propellants Explos. Pyrotech. 1991, 16, 43–47. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C5RA10255C
http://dx.doi.org/10.1039/C7TA03424E
http://dx.doi.org/10.1016/j.polymer.2016.09.059
http://dx.doi.org/10.1002/prep.19910160111
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Section 
	Materials 
	Sample Preparations 
	Material Characterizations 

	Results and Discussion 
	Morphological and Structural Features of Core-Shell HMX@PDA Particles 
	Detonation Properties of PBXs Based on HMX@Polydopamine 
	Mechanical Properties of PBXs Based on HMX@Polydopamine 
	Mechanism for the Enhancement of Mechanical Properties 
	Thermal Properties of PBXs Based on HMX@Polydopamine 
	Sensitivity Study of PBXs Based on HMX@Polydopamine 

	Conclusions 
	References

