Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station
Abstract
1. Introduction
2. Methods and Principles
3. Design of Plasmonic Antipodal Vivaldi Antenna
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, C.; Luo, Q.; Mao, G.; Sheng, M.; Li, J. Vehicle-mounted base station for connected and autonomous vehicles: Opportunities and challenges. IEEE Wirel. Commun. 2019, 3, 31–37. [Google Scholar] [CrossRef]
- Imran, M.A.; Sambo, Y.A.; Abbasi, Q.H. 5G communication systems and connected healthcare. In Enabling 5G Communication Systems to Support Vertical Industries; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 149–177. [Google Scholar]
- Yan, J.; Wu, D.; Wang, H.; Wang, R. Multipoint. Cooperative transmission for virtual reality in 5G new radio. IEEE Multimed. 2019, 26, 51–58. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, P.; Chen, X. A broadband ±45° dual-polarized multiple-input multiple-output antenna for 5G base stations with extra decoupling elements. J. Commun. Inf. Netw. 2018, 3, 31–37. [Google Scholar] [CrossRef]
- Zheng, D.; Chu, Q. A wideband dual-polarized antenna with two independently controllable resonant modes and its array for base-station applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2014–2017. [Google Scholar] [CrossRef]
- Wu, B.Q.; Luk, K.M. A broadband dual-polarized magneto-electric dipole antenna with simple feeds. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 60–63. [Google Scholar]
- Gou, Y.; Yang, S.; Li, J.; Nie, Z. A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications. IEEE Trans. Antennas Propag. 2014, 62, 4392–4395. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Gong, S. A broadband dual-polarized base station antenna with sturdy construction. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 665–668. [Google Scholar] [CrossRef]
- Chu, Q.X.; Wen, D.L.; Luo, Y. A broadband ±45° dual-polarized antenna with Y-shaped feeding lines. IEEE Trans. Antennas Propag. 2015, 63, 483–490. [Google Scholar] [CrossRef]
- Zheng, D.Z.; Chu, Q.X. A multimode wideband ±45° dual-polarized antenna with embedded loops. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 633–636. [Google Scholar] [CrossRef]
- Gao, S.; Li, L.W.; Leong, M.S.; Yeo, T.S. A broad-band dual-polarized microstrip patch antenna with aperture coupling. IEEE Trans. Antennas Propag. 2003, 51, 898–900. [Google Scholar] [CrossRef]
- Sim, C.; Chang, C.; Row, J. Dual-feed dual-polarized patch antenna with low cross polarization and high isolation. IEEE Trans. Antennas Propag. 2009, 57, 3321–3324. [Google Scholar] [CrossRef]
- Khan, M.; Chatterjee, D. Characteristic mode analysis of a class of empirical design techniques for probe-fed, U-slot microstrip patch antennas. IEEE Trans. Antennas. Propag. 2016, 64, 2758–2770. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Liu, K.; Fan, Y. Ultra-wideband dual-polarized antenna with three resonant modes for 2G/3G/4G/5G communication systems. IEEE Access 2019, 7, 43214–43221. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, J.; Ran, X.; Zhu, C. A novel Koch and Sierpinski combined fractal antenna for 2G/3G/4G/5G/WLAN/navigation applications. Microw. Opt. Technol. Lett. 2017, 59, 2147–2155. [Google Scholar] [CrossRef]
- Wen, L.H.; Gao, S.; Mao, C.X.; Luo, Q.; Hu, W.; Yin, Y.; Yang, X. A wideband dual-polarized antenna using shorted dipoles. IEEE Access 2018, 6, 39725–39733. [Google Scholar] [CrossRef]
- Van Rooyen, M.; Odendaal, J.W.; Joubert, J. High-gain directional antenna for WLAN and WiMAX applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 286–289. [Google Scholar] [CrossRef]
- Gibson, P.J. The vivaldi aerial. In Proceedings of the 9th European Microwave Conference, Brighton, UK, 17–20 September 1979; pp. 101–105. [Google Scholar]
- Simons, R.N.; Dib, N.I.; Lee, R.Q.; Katehi, L.P.B. Integrated uniplanar transition for linearly tapered slot antenna. IEEE Trans. Antennas Propag. 1995, 43, 998–1002. [Google Scholar] [CrossRef]
- Chen, Y.J.; Hong, W.; Wu, K. Design of a monopulse antenna using a dual V-type linearly tapered slot antenn. IEEE Trans. Antennas Propag. 2008, 56, 2903–2909. [Google Scholar] [CrossRef]
- Ozbay, Z. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef]
- Hibbins, A.P. Experimental verification of designer surface plasmons. Science 2005, 308, 670–672. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martin-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef]
- Fong, B.H.; Colburn, J.S.; Ottusch, J.J.; Visher, J.L.; Sievenpiper, D.F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 3212–3221. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Fei, X.; Wang, J. A holographic antenna based on spoof surface plasmon polaritons. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1528–1532. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Zarghoon, B.; Virdee, B.S.; Denidni, T.A. Improvement of gain and elevation tilt angle using metamaterial loading for millimeter-wave applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 418–420. [Google Scholar] [CrossRef]
- Shi, Y.; Li, K.; Wang, J.; Li, L.; Liang, C.H. An etched planar meta-surface half Maxwell fish-eye lens antenna. IEEE Trans. Antennas Propag. 2015, 63, 3742–3747. [Google Scholar] [CrossRef]
- Hongnara, T.; Chaimool, S.; Akkaraekthalin, P.; Zhao, Y. Design of compact beam-steering antennas using a meta-surface formed by uniform square rings. IEEE Access 2018, 6, 9420–9429. [Google Scholar] [CrossRef]
- Singh, A.K.; Abegaonkar, M.P.; Koul, S.K. High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2388–2391. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, Q.; Xiao, J. Sub-wavelength unidirectional antenna realized by stacked spoof localized surface plasmon resonators. Sci. Rep. 2016, 6, 29773. [Google Scholar] [CrossRef]
- Huang, M.; Wang, L.; Qiao, W. Design of 2 to 18 GHz balanced antipodal Vivaldi antennas using substrate-integrated lenses. Electromagnetics 2018, 38, 478–487. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Yao, L.; Xiao, J. A novel dielectric loaded Vivaldi antenna with improved radiation characteristics for UWB application. Appl. Comput. Electromagn. Soc. J. 2018, 33, 394–398. [Google Scholar]
- Peng, F.; Yong, C.J.; Wei, H. A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 127–130. [Google Scholar] [CrossRef]
- Marek, D.; Harihara, S.G.; Prabhu, S.S. Design and validation of an antipodal Vivaldi antenna with additional slots. Int. J. Antennas Propag. 2019, 2019, 7472186. [Google Scholar]
- Eichenberger, J.; Yetisir, E.; Ghalichechian, N. High-Gain antipodal Vivaldi Antenna with pseudoelement and notched tapered slot operating at (2.5 to 57) GHz. IEEE Trans. Antennas Propag. 2019, 67, 4357–4366. [Google Scholar] [CrossRef]
- Fayu, W.; Jun, C.; Binhong, L. A novel ultra-wideband antipodal Vivaldi antenna with trapezoidal dielectric substrate. Microw. Opt. Technol. Lett. 2018, 60, 449–455. [Google Scholar]
- Yang, Z.; Jingjian, H.; Weiwei, W. An antipodal Vivaldi antenna with band-notched characteristics for ultra-wideband applications. AEU Int. J. Electron. Commun. 2017, 76, 152–157. [Google Scholar] [CrossRef]
Frequency | Typical AVA | Plasmonic AVA |
---|---|---|
1.8 GHz | 113.5 | 52.3 |
2.0 GHz | 66.6 | 54.7 |
3.0 GHz | 61 | 52.9 |
4.0 GHz | 52.2 | 52.6 |
5.0 GHz | 48.1 | 47.1 |
6.0 GHz | 41 | 66.9 |
Reference (Year) | Physical Size (mm2) | fmin (GHz) | Gain (dBi) | Electrical Size |
---|---|---|---|---|
[31] (2018) | 71 × 50 | 2.0 | 4–7.5 | 0.47λ0 × 0.3λ0 |
[32] (2018) | 50 × 40 | 2.8 | 5.5–9 | 0.46λ0 × 0.37λ0 |
[33] (2011) | 60 × 48 | 2.4 | 3.8–10 | 0.48λ0 × 0.38λ0 |
[34] (2019) | 90 × 80 | 3.76 | 5–7 | 1.13λ0 × 1.0λ0 |
[35] (2019) | 186 × 77 | 2.5 | 4–16 | 1.55λ0 × 0.64λ0 |
[36] (2018) | 60.7 × 57.5 | 3.3 | 3.8–12.6 | 0.67λ0 × 0.63λ0 |
[37] (2017) | 104 × 100 | 2.0 | 2.2–8 | 0.69λ0 × 0.67λ0 |
Structure A | 94 × 70 | 2.4 | 3–9 | 0.75λ0 × 0.56λ0 |
Structure B | 94 × 70 | 2.1 | 4.5–8 | 0.66λ0 × 0.49λ0 |
Structure C | 94 × 70 | 1.8 | 5.5–9 | 0.56λ0 × 0.42λ0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.H.; Tan, C.; Zhou, Y.J. Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station. Appl. Sci. 2020, 10, 2429. https://doi.org/10.3390/app10072429
Dai LH, Tan C, Zhou YJ. Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station. Applied Sciences. 2020; 10(7):2429. https://doi.org/10.3390/app10072429
Chicago/Turabian StyleDai, Li Hui, Chong Tan, and Yong Jin Zhou. 2020. "Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station" Applied Sciences 10, no. 7: 2429. https://doi.org/10.3390/app10072429
APA StyleDai, L. H., Tan, C., & Zhou, Y. J. (2020). Ultrawideband Low-Profile and Miniaturized Spoof Plasmonic Vivaldi Antenna for Base Station. Applied Sciences, 10(7), 2429. https://doi.org/10.3390/app10072429