Agaricus bisporus By-Products as a Source of Chitin-Glucan Complex Enriched Dietary Fibre with Potential Bioactivity
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method for Preparation of Mushroom DFI
2.3. Dietary Fiber, Protein, Moisture, Lipids, Ash and Caloric Value Content of the DFI
2.4. FTIR Analysis
2.5. DFI Chromatic Characteristics
2.6. Water Retention Capacity and Oil Retention Capacity
2.7. Experimental Design
2.8. Statistical Analysis
2.9. Principal Component Analysis (PCA)
3. Results
3.1. Development and Optimization of a Method for Obtaining Mushroom DFI
3.2. Yield of the Mushroom DFI
3.3. Fibre Content and Composition
3.4. Protein, Fat, Ash Content and Energy
3.5. Colour of Mushroom DFI
3.6. Mushroom DFI Water and Oil Retention Capacity
3.7. Effect of Mushroom DFI Chemical Composition on the Colour and Functional Properties
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Dependent Variable | Equation 1 | R2 | R2Adj |
---|---|---|---|
DFI Yield | Y = −1.937 + 0.391X1 + 0.166X2 − 0.130X22 + 0.112X3 − 0.119X32 + 0.170X1X3 | 0.647 | 0.483 |
Protein Yield | Y = −0.528 + 0.177X1 | 0.339 | 0.303 |
Fat Yield | Y = − 0.035 − 0.0066X1 − 0.0031X22 − 0.005X1X3 | 0.515 | 0.424 |
L* | Y = 90.20 − 0.92X1 − 1.13X12 − 1.46X2 − 2.78X22 − 1.02X3 − 2.27X1X3 | 0.596 | 0.409 |
a* | Y = −0.397 + 0.207X1 + 0.514X12 + 0.410X2 + 0.733X22 + 0.412X3 − 0.371X32 + 0.285X1X2 + 0.453X1X3 + 0.261X2X3 | 0.785 | 0.592 |
b* | Y = 23.07 + 0.749X1 − 1.646X12 − 1.425X22 + 1.000X3 − 2.140X32 − 1.004X1X2 − 0.810X2X3 | 0.588 | 0.348 |
WRC | Y = 5.784 − 2.229X1 + 2.566X12 + 2.467X22 + 2.377X32 − 1.996X1X3 | 0.714 | 0.612 |
ORC | Y = 6.989 − 1.174X1 + 1.985X12 + 1.449X22 + 0.609X32 − 1.580X1X2 − 2.489X1X3 + 1.379X2X3 | 0.875 | 0.801 |
Factor 1 | Factor 2 | Factor 3 | |
---|---|---|---|
Total Sugars | 0.946 | −0.167 | −0.054 |
GlcNH2 | 0.861 | 0.326 | −0.059 |
Glc | 0.825 | −0.463 | −0.065 |
Xyl | 0.837 | 0.376 | −0.061 |
Man | 0.607 | 0.551 | 0.219 |
GalA | 0.358 | 0.686 | 0.037 |
GlcA | 0.458 | −0.801 | 0.063 |
Fuc | −0.819 | 0.213 | 0.166 |
Fat | −0.000 | −0.284 | −0.501 |
Ash | −0.484 | −0.383 | 0.004 |
Protein | −0.938 | 0.002 | −0.129 |
WRC | 0.801 | −0.030 | 0.192 |
ORC | 0.652 | −0.083 | 0.205 |
L* | 0.068 | 0.090 | −0.924 |
a* | −0.072 | −0.226 | 0.922 |
b* | −0.717 | 0.311 | 0.151 |
References
- Chang, S.T. World production of edible and medicinal mushrooms in 1997 with emphasis on Lentinus edods (Berk). Sing. in China. Int. J. Med. Mushrooms 1999, 1, 291–301. [Google Scholar] [CrossRef]
- Chakravarty, B. Trends in mushroom cultivation and breeding. Aust. J. Agric. Eng. 2011, 2, 102–109. [Google Scholar]
- Wani, B.A.; Bodha, R.H.; Wani, A.H. Nutritional and medicinal importance of mushrooms. J. Med. Plants Res. 2010, 4, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Carbonero, E.R.; Gracher, A.H.P.; Komura, D.L.; Marcon, R.; Freitas, C.S.; Baggio, C.H.; Santos, A.R.S.; Torri, G.; Gorin, P.A.J.; Iacomini, M. Lentinus edodes heterogalactan: Antinociceptive and anti-inflammatory effects. Food Chem. 2008, 111, 531–537. [Google Scholar] [CrossRef]
- Chang, C.-W.; Lur, H.-S.; Lu, M.-K.; Cheng, J.-J. Sulfated polysaccharides of Armillariella mellea and their anti-inflammatory activities via NF-κB suppression. Food Res. Int. 2013, 54, 239–245. [Google Scholar] [CrossRef]
- Komura, D.L.; Carbonero, E.R.; Gracher, A.H.P.; Baggio, C.H.; Freitas, C.S.; Marcon, R. Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties. Bioresour. Technol. 2010, 101, 6192–6199. [Google Scholar] [CrossRef]
- Lindequist, U.; Niedermeyer, T.H.J.; Jülich, W.-D. The pharmacological potential of mushrooms. Evid. Based Complement. Altern. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Wessels, G.H. Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol. 1994, 32, 413–437. [Google Scholar] [CrossRef]
- Michalenko, G.O.; Hohl, H.R.; Rast, D. Chemistry and Architecture of the Mycelial Wall of Agaricus bisporus. J. Gen. Microbiol. 1976, 92, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Berecochea-Lopez, A.; Decordé, K.; Ventura, E.; Godard, M.; Bornet, A.; Teissèdre, P.L.; Cristol, J.P.; Rouanet, J.M. Fungal chitin-glucan from Aspergillus niger efficiently reduces aortic fatty streak accumulation in the high-fat fed hamster, an animal model of nutritionally induced atherosclerosis. J. Agric. Food Chem. 2009, 57, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Bays, H.E.; Evans, J.L.; Maki, K.C.; Evans, M.; Maquet, V.; Cooper, R.; Anderson, J.W. Chitin-glucan fiber effects on oxidized low-density lipoprotein: A randomized controlled trial. Eur. J. Clin. Nutr. 2013, 67, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacour, A.C.; Silva, M.E.; Cecon, P.R.; Bambirra, E.A.; Vieira, E.C. Effect of dietary chitin on cholesterol absorption and metabolism in rats. J. Nutr. Sci. Vitaminol. 1992, 38, 609–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, P.T.; Ramachandran-Nair, K.G. Hyphocholesterolemic effect of chitin and its hydrolysed products in albino rats. Fish. Technol. 1998, 35, 46–49. [Google Scholar]
- Cao, Y.; Zou, S.; Xu, H.; Li, M.; Tong, Z.; Xu, M.; Xu, X. Hypoglycemic activity of the Baker’s yeast β-glucan in obese/type 2 diabetic mice and the underlying mechanism. Mol. Nutr. Food Res. 2016, 60, 2678–2690. [Google Scholar] [CrossRef]
- Synytsya, A.; Míčková, K.; Synytsya, A.; Jablonský, I.; Spěváček, J.; Erban, V.; Kováříková, E.; Čopíková, J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009, 76, 548–556. [Google Scholar] [CrossRef]
- Xu, X.; Yang, J.; Ning, Z.; Zhang, X. Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota. Food Funct. 2015, 6, 2653–2663. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X. Lentinula edodes-derived polysaccharide alters the spatial structure of gut microbiota in mice. PLoS ONE 2015, 10, e0115037. [Google Scholar] [CrossRef]
- Giannenas, I.; Tsalie, E.; Chronis, E.F.; Mavridis, S.; Tontis, D.; Kyriazakis, I. Consumption of Agaricus bisporus mushroom affects the performance, intestinal microbiota composition and morphology and antioxidant status of turkey poults. Anim. Feed Sci. Technol. 2011, 165, 218–229. [Google Scholar] [CrossRef]
- Pallav, K.; Dowd, S.E.; Villafuerte, J.; Yang, X.; Kabbani, T.; Hansen, J.; Dennis, M.; Leffler, D.A.; Newburg, D.S.; Kelly, C.P. Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers A randomized clinical trial. Gut Microbes 2014, 5, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Cheung, P.C.K. Fermentation of β-Glucans derived from different sources by bifidobacteria: Evaluation of their bifidogenic effect. J. Agric. Food Chem. 2011, 59, 5986–5992. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Walton, G.; Sousa, S.; Rocha-Santos, T.A.P.; Duarte, A.C.; Freitas, A.C.; Gomes, A.M.P. In vitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. LWT Food Sci. Technol. 2016, 73, 131–139. [Google Scholar] [CrossRef]
- Zivanovic, S. Identification of Opportunities for Production of Ingredients Based on Further Processed Fresh Mushrooms, Off-Grade Mushrooms, By-Products, and Waste Materials. Project Report Prepared for Mushroom Council. Available online: http://mushroomcouncil.org/wp-content/uploads/2012/02/2006_09IndustryReport.pdf (accessed on 20 December 2012).
- Wani, A.M.; Hussain, P.R.; Meena, R.S.; Dar, M.A.; Mir, M.A. Effect of gamma irradiation and sulphitation treatments on keeping quality of white button mushroom Agaricus bisporus (J. Lge). Int. J. Food Sci. Technol. 2009, 44, 967–973. [Google Scholar] [CrossRef]
- Jolivet, S.; Arpin, N.; Wichers, H.J.; Pellon, G. Agaricus bisporus browning: A review. Mycol. Res. 1998, 102, 1459–1483. [Google Scholar] [CrossRef]
- European Commission. The European Regulation of Waste Management, Directive 2008/98/ EC (‘Waste Framework Directive’); European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Wu, T.; Zivanovic, S.; Draughon, F.A.; Sams, C.E. Chitin and Chitosan Value-Added Products from Mushroom Waste. J. Agric. Food Chem. 2004, 52, 7905–7910. [Google Scholar] [CrossRef]
- Dallies, N.; Francois, J.; Paquet, V. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 1998, 14, 1297–1306. [Google Scholar] [CrossRef]
- Aguilar-Uscanga, B.; Francois, J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 2003, 37, 268–274. [Google Scholar] [CrossRef]
- Baker, L.G.; Specht, C.A.; Donlin, M.J.; Lodge, J.K. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot. Cell 2007, 6, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Roca, C.; Chagas, B.; Farinha, I.; Freitas, F.; Mafra, L.; Aguiar, F.; Oliveira, R.; Reis, M.A.M. Production of yeast chitin–glucan complex from biodiesel industry byproduct. Process Biochem. 2012, 47, 1670–1675. [Google Scholar] [CrossRef]
- Ivshin, V.P.; Artamonova, S.D.; Ivshina, T.N.; Sharnina, F.F. Methods for isolation of chitin-glucan complexes from higher fungi native biomass. Polym. Sci. Ser. B 2007, 49, 305–310. [Google Scholar] [CrossRef]
- Rodríguez, R.; Jiménez, A.; Fernández-Bolaños, J.; Guillén, R.; Heredia, A. Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol. 2006, 17, 3–15. [Google Scholar] [CrossRef]
- Guillon, F.; Champ, M. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res. Int. 2000, 33, 233–245. [Google Scholar] [CrossRef]
- Englyst, H.N.; Wiggims, H.S.; Cummings, J.H. Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 1982, 107, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Hudson, G.J. The classification and measurement of dietary carbohydrates. Food Chem. 1996, 57, 15–21. [Google Scholar] [CrossRef]
- Abraão, A.S.; Lemos, A.M.; Vilela, A.; Sousa, J.M.; Nunes, F.M. Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food Bioprod. Process. 2013, 91, 481–494. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; AOAC International: Arlington, VA, USA, 1996. [Google Scholar]
- Buchholz, A.C.; Schoeller, D.A. Is a calorie a calorie? Am. J. Clin. Nutr. 2004, 79, 899S–906S. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J.A.; de Monredon, F.D.; Dysseler, P.; Guillon, F.; Amado, R.; Thibault, J.-T. Hydration properties of dietary fibre and resistant starch: A European collaborative study. LWT Food Sci. Technol. 2000, 33, 72–79. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introduction to Statistical Quality Control, 3rd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Vandeginste, B.G.; Massart, L.; Buydens, L.M.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Massiot, P.; Renard, C.M.G.C. Composition, physicochemical properties and enzymatic degradation of fibers prepared from different tissues of apple. LWT Food Sci. Technol. 1997, 30, 800–806. [Google Scholar] [CrossRef]
- Thomas, M.; Crepeau, M.J.; Rumpunen, K.; Thibault, J.-F. Dietary fiber and cell-wall polysaccharides in the fruits of Japanese quince (Chaenomeles japonica). LWT Food Sci. Technol. 2000, 33, 124–131. [Google Scholar] [CrossRef]
- Wong, K.H.; Cheung, P.C. Dietary fibers from mushroom sclerotia: 1. Preparation and physicochemical and functional properties. J. Agric. Food Chem. 2005, 53, 9395–9400. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Joint FAO/WHO food standards programme. In Report of the 30th Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses, Proceedings of the Codex Alimentarius Commission 32nd Session, Rome, Italy, 29 June–4 July 2009; ALINORM 09/332/26, Part B Provisions on Dietary Fibre; FAO/WHO: Rome, Italy, 2009. [Google Scholar]
- Bernardo, D.; Mendoza, C.G.; Calonje, M.; Novaes-Ledieu, M. Chemical analysis of the lamella walls of Agaricus bisporus fruit bodies. Curr. Microbiol. 1999, 38, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Novaes-Ledieu, M.; Mendoza, G.C. The cell walls of Agaricus bisporus and Agaricus campestris fruiting body hyphae. Can. J. Microbiol. 1981, 27, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Focher, B.; Najji, A.; Torri, G.; Cosani, A.; Terbojevich, M. Structural differences between chitin polymorphs and their precipitates from solutions-evidence from CP-MAS 13C NMR, FT-IR and FT-Raman spectroscopy. Carbohydr. Res. 1992, 17, 97–102. [Google Scholar] [CrossRef]
- Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs 2010, 8, 1567–1636. [Google Scholar] [CrossRef] [Green Version]
- Cheung, P.C.-K. Dietary fibre content and composition of some edible fungi determined by two methods of analysis. J. Sci. Food Agric. 1997, 73, 255–260. [Google Scholar] [CrossRef]
- Hammond, J.B.W. Changes in composition of harvested mushrooms (Agaricus bisporus). Phytochemistry 1979, 18, 415–418. [Google Scholar] [CrossRef]
- Ramírez, L.; Muez, V.; Alfonso, M.; Barrenechea, A.G.; Alfonso, L.; Pisabarro, A.G. Use of molecular markers to differentiate between commercial strains of the button mushroom Agaricus bisporus. FEMS Microbiol. Lett. 2001, 198, 45–48. [Google Scholar] [CrossRef]
- Vetter, J. Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem. 2007, 102, 6–9. [Google Scholar] [CrossRef]
- Monahan, F.J.; German, J.B.; Kinsella, J.E. Effect of pH and temperature on protein unfolding and thiol/disulfide interchange reactions during heat-induced gelation of whey proteins. J. Agric. Food Chem. 1995, 43, 46–52. [Google Scholar] [CrossRef]
- Rice, R.H.; Lee, Y.M.; Brown, W.D. Interactions of heme proteins with hydrogen peroxide: Protein crosslinking and covalent binding of benzo[a]pyrene and 17P-estradiol. Arch. Biochem. Biophys. 1983, 221, 417–427. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J. Agric. Food Chem. 1999, 47, 1295–1319. [Google Scholar] [CrossRef] [PubMed]
- Thebaudin, J.Y.; Lefebvre, A.C.; Harrington, M.; Bourgeois, C.M. Dietary fibres: Nutritional and technological interest. Trends Food Sci. Technol. 1997, 8, 41–48. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martin-Belloso, O. Comparison of dietary fibre from by-products of processing fruits and greens and from cereals. LWT Food Sci. Technol. 1999, 32, 503–508. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Rupérez, P.; Borroto, B.; Saura-Calixto, F. Mango peels as a new tropical fibre: Preparation and characterization. LWT Food Sci. Technol. 1996, 29, 729–733. [Google Scholar] [CrossRef]
- Robertson, J.A.; Eastwood, M.A. An examination of factors which may affect the water holding capacity of dietary fibre. Br. J. Nutr. 1981, 45, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Figuerola, F.; Hurtado, M.L.; Estévez, A.M.; Chiffelle, I.; Asenjo, F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 2005, 91, 395–401. [Google Scholar] [CrossRef]
- Rodríguez-Ambriz, S.L.; Islas-Hernández, J.J.; Agama-Acevedo, E.; Tovar, J.; Bello-Pérez, L.A. Characterization of a fibre-rich powder prepared by liquefaction of unripe banana flour. Food Chem. 2008, 107, 1515–1521. [Google Scholar] [CrossRef]
- Garau, M.C.; Simal, S.; Rosselló, C.; Femenia, A. Effect of air drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem. 2007, 104, 1014–1024. [Google Scholar] [CrossRef]
- Fuentes-Alventosa, J.M.; Rodríguez-Gutiérrez, G.; Jaramillo-Carmona, S.; Espejo-Calvo, J.A.; Rodríguez-Arcos, R.; Fernández-Bolaños, J.; Guillén-Bejarano, R.; Jiménez-Araujo, A. Effect of extraction method on chemical composition and functional characteristics of high dietary fibre powders obtained from asparagus by-products. Food Chem. 2009, 113, 665–671. [Google Scholar] [CrossRef]
- Chaplin, M.F. Fibre and water binding. Proc. Nutr. Soc. 2003, 62, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Elhardallou, S.B.; Walker, A.F. The water-holding capacity of three starchy legumes in the raw, cooked and fibre-rich fraction forms. Plant Food Hum. Nutr. 1993, 44, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Chau, C.F.; Huang, Y.L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 2003, 51, 2615–2618. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.K.; Kumar, V.; Bhosle, S.; Sahoo, J.; Chatli, M.K. Dietary fibers as functional ingredients in meat products and their role in human health. Int. J. Livest. Prod. 2011, 2, 45–54. [Google Scholar]
- Volman, J.J.; Helsper, J.P.F.G.; Wei, S.; Baars, J.J.P.; van Griensven, L.J.L.D.; Sonnenberg, A.S.M.; Mensink, R.P.; Plat, J. Effects of mushroom-derived β-glucan-rich polysaccharide extracts on nitric oxide production by bone marrow-derived macrophages and nuclear factor-κB transactivation in Caco-2 reporter cells: Can effects be explained by structure? Mol. Nutr. Food Res. 2010, 54, 268–276. [Google Scholar] [CrossRef]
- Smiderle, F.R.; Ruthes, A.C.; van Arkel, J.; Chanput, W.; Iacomini, M.; Wichers, H.J.; Van Griensven, L.J. Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complement. Altern. Med. 2011, 11, 58. [Google Scholar] [CrossRef] [Green Version]
- Smiderle, F.R.; Alquini, G.; Tadra-Sfeir, M.Z.; Iacomini, M.; Wichers, H.J.; Van Griensven, L.J. Agaricus bisporus and Agaricus brasiliensis (1→6)-β-D-glucans show immunostimulatory activity on human THP-1 derived macrophages. Carbohydr. Polym. 2013, 94, 91–99. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Niksic, M.; Jakovljevic, D.; Helsper, J.P.F.G.; Van Griensven, L.J.L.D. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 2011, 129, 1667–1675. [Google Scholar] [CrossRef]
- Tian, Y.; Zeng, H.; Xu, Z.; Zheng, B.; Lin, Y.; Gan, C.; Lo, Y.M. Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydr. Polym. 2012, 88, 522–529. [Google Scholar] [CrossRef]
- Jeong, S.C.; Koyyalamudi, S.R.; Jeong, Y.T.; Song, C.H.; Pang, G. Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus white button mushrooms. J. Med. Food 2012, 15, 58–65. [Google Scholar] [CrossRef]
- Pires, A.D.R.A.; Ruthes, A.C.; Cadena, S.M.; Acco, A.; Gorin, P.A.; Iacomini, M. Cytotoxic effect of Agaricus bisporus and Lactarius rufus β-D-glucans on HepG2 cells. Int. J. Biol. Macromol. 2013, 58, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, A.D.R.A.; Ruthes, A.C.; Cadena, S.M.S.C.; Iacomini, M. Cytotoxic effect of a mannogalactoglucan extracted from Agaricus bisporus on HepG2 cells. Carbohydr. Polym. 2017, 170, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Ruthes, A.C.; Rattmann, Y.D.; Malquevicz-Paiva, S.M.; Carbonero, E.R.; Córdova, M.M.; Baggio, C.H.; Santos, A.R.; Gorin, P.A.; Iacomini, M. Agaricus bisporus fucogalactan: Structural characterization and pharmacological approaches. Carbohydr. Polym. 2013, 92, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruthes, A.C.; Rattmann, Y.D.; Carbonero, E.R.; Gorin, P.A.J.; Iacomini, M. Structural characterization and protective effect against murine sepsis of fucogalactans from Agaricus bisporus and Lactarius rufus. Carbohydr. Polym. 2012, 87, 1620–1627. [Google Scholar] [CrossRef] [Green Version]
- Neyrinck, A.M.; Possemiers, S.; Verstraete, W.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high fat-diet in mice. J. Nutr. Biochem. 2012, 23, 51–59. [Google Scholar] [CrossRef]
- Jaime, L.; Mollá, E.; Fernández, A.; Martín-Cabrejas, M.; López-Andréu, F.; Esteban, R. Structural carbohydrates differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. J. Agric. Food Chem. 2000, 50, 122–128. [Google Scholar] [CrossRef]
- Kethireddipalli, P.; Hung, Y.-C.; Phillips, R.O.; Mc Watters, K.H. Evaluating the role of cell material and soluble protein in the functionality of cowpea (Vigna unguiculata) pastes. J. Food Sci. 2002, 67, 53–59. [Google Scholar] [CrossRef]
- Roehrig, K.L. The physiological effects of dietary fiber-a review. Food Hydrocoll. 1988, 2, 1–18. [Google Scholar] [CrossRef]
- Faivre, J.; Doyon, F.; Boutron, M. The ECP calcium fibre polyp prevention study. The ECP colon group. Eur. J. Cancer Prev. 1993, 2 (Suppl. 2), 99–106. [Google Scholar] [CrossRef]
- Reddy, B.S.; Engle, A.; Katsifis, S.; Simi, B.; Bartram, H.P.; Perrino, P.; Mahan, C. Biochemical epidemiology of colon cancer: Effect of types of dietary fibre on fecal mutagens, acid and neutral sterols in healthy subjects. Cancer Res. 1989, 49, 4629–4635. [Google Scholar]
Coded | Actual | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (h) | Time (h) | Run Number | Yield (g/100 g) | Fiber (g/100 g) | Protein 1 (g/100 g) | Fat (g/100 g) | Ash (g/100 g) | ||||
−1 | −1 | −1 | 0.181 | 2.1 | 2.81 | 12 | 1.21 | 64.9 | 17.1 | 2.2 | 5.0 |
+1 | −1 | −1 | 0.419 | 2.1 | 2.81 | 10 | 0.77 | 64.8 | 10.6 | 2.1 | 2.4 |
−1 | +1 | −1 | 0.181 | 3.9 | 2.81 | 5 | 0.92 | 60.1 | 21.1 | 1.9 | 2.2 |
+1 | +1 | −1 | 0.419 | 3.9 | 2.81 | 3 | 1.22 | 63.7 | 12.0 | 2.1 | 3.9 |
−1 | −1 | +1 | 0.181 | 2.1 | 5.19 | 2 | 1.44 | 56.9 | 20.0 | 1.7 | 5.5 |
+1 | −1 | +1 | 0.419 | 2.1 | 5.19 | 8 | 2.78 | 37.9 | 30.8 | 2.5 | 18.1 |
−1 | +1 | +1 | 0.181 | 3.9 | 5.19 | 14 | 2.34 | 42.6 | 32.7 | 1.8 | 10.3 |
+1 | +1 | +1 | 0.419 | 3.9 | 5.19 | 13 | 2.22 | 49.2 | 24.7 | 2.1 | 9.5 |
−α | 0 | 0 | 0.1 | 3 | 4 | 11 | 1.73 | 42.4 | 28.9 | 2.0 | 6.8 |
+α | 0 | 0 | 0.5 | 3 | 4 | 16 | 2.14 | 42.7 | 28.5 | 2.1 | 11.5 |
0 | −α | 0 | 0.3 | 1.5 | 4 | 9 | 1.15 | 48.9 | 27.6 | 1.9 | 5.0 |
0 | +α | 0 | 0.3 | 4.5 | 4 | 6 | 2.20 | 45.1 | 28.7 | 1.7 | 6.3 |
0 | 0 | −α | 0.3 | 3 | 2 | 7 | 1.57 | 51.8 | 27.9 | 2.2 | 2.6 |
0 | 0 | +α | 0.3 | 3 | 6 | 20 | 1.84 | 44.8 | 34.5 | 1.9 | 5.0 |
0 | 0 | 0 | 0.3 | 3 | 4 | 19 | 2.02 | 42.4 | 39.2 | 2.0 | 5.4 |
0 | 0 | 0 | 0.3 | 3 | 4 | 17 | 1.94 | 49.8 | 23.1 | 1.7 | 8.3 |
0 | 0 | 0 | 0.3 | 3 | 4 | 18 | 1.90 | 46.6 | 40.1 | 2.1 | 5.1 |
0 | 0 | 0 | 0.3 | 3 | 4 | 4 | 2.09 | 53.8 | 23.8 | 2.2 | 6.5 |
0 | 0 | 0 | 0.3 | 3 | 4 | 15 | 2.13 | 55.8 | 23.0 | 1.7 | 6.1 |
0 | 0 | 0 | 0.3 | 3 | 4 | 1 | 1.72 | 47.1 | 31.8 | 2.0 | 3.2 |
Original | 30.3 | 22.7 | 5.2 | 9.2 |
Factor | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time (L) | Time (Q) | Lack of Fit | Pure Error | Total SS | |||||||||
DFI Yield | SS | 2.096 | 0.024 | 0.373 | 0.260 | 0.173 | 0.221 | 0.004 | 0.231 | 0.064 | 1.591 | 0.111 | 5.090 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 19 | |
F | 94.65 | 1.12 | 16.86 | 11.76 | 7.80 | 9.98 | 0.183 | 10.44 | 2.92 | 14.37 | |||
p< | 0.0002 | 0.338 | 0.009 | 0.018 | 0.038 | 0.025 | 0.687 | 0.023 | 0.147 | 0.0055 | |||
Protein Yield | SS | 0.427 | 0.0124 | 0.0389 | 0.0680 | 0.0335 | 0.0350 | 0.0005 | 0.0561 | 0.102 | 0.382 | 0.118 | 1.257 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 19 | |
F | 18.088 | 0.567 | 1.648 | 2.881 | 1.422 | 1.483 | 0.0227 | 2.379 | 4.304 | 3.237 | |||
p< | 0.008 | 0.500 | 0.255 | 0.150 | 0.287 | 0.278 | 0.886 | 0.184 | 0.093 | 0.112 | |||
Fat Yield | SS | 0.000589 | 0.000002 | 0.000044 | 0.00016 | 0.000094 | 0.000026 | 0 | 0.00200 | 0.000019 | 0.00059 | 0.000102 | 0.00181 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 19 | |
F | 29.01 | 0.111 | 2.148 | 7.657 | 4.628 | 1.286 | 0.0012 | 9.860 | 0.941 | 5.818 | |||
p< | 0.003 | 0.752 | 0.203 | 0.039 | 0.084 | 0.308 | 0.973 | 0.026 | 0.377 | 0.038 | |||
L* | SS | 11.659 | 15.892 | 29.191 | 105.050 | 14.185 | 8.990 | 2.040 | 41.284 | 6.820 | 125.06 | 6.875 | 369.27 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 19 | |
F | 8.479 | 11.558 | 21.230 | 76.399 | 10.316 | 6.538 | 1.484 | 30.024 | 4.960 | 18.191 | |||
p< | 0.033 | 0.019 | 0.006 | 0.0003 | 0.024 | 0.051 | 0.278 | 0.003 | 0.076 | 0.003 | |||
a* | SS | 0.587 | 3.785 | 2.291 | 7.757 | 2.304 | 2.030 | 0.648 | 1.641 | 0.546 | 5.914 | 0.144 | 28.075 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 19 | |
F | 20.369 | 131.36 | 79.533 | 269.25 | 79.978 | 70.457 | 22.488 | 56.959 | 18.951 | 41.054 | |||
p< | 0.006 | 0.00009 | 0.0003 | 0.00002 | 0.0003 | 0.0004 | 0.005 | 0.0006 | 0.007 | 0.0005 | |||
b* | SS | 7.670 | 38.664 | 1.310 | 29.751 | 13.560 | 66.903 | 8.757 | 1.020 | 5.254 | 98.375 | 1.422 | 252.40 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 19 | |
F | 26.969 | 135.96 | 4.607 | 104.61 | 47.681 | 235.25 | 30.793 | 3.587 | 18.475 | 69.183 | |||
p< | 0.003 | 0.00008 | 0.085 | 0.0002 | 0.001 | 0.00002 | 0.003 | 0.117 | 0.008 | 0.0001 | |||
WRC | SS | 67.870 | 93.966 | 0.337 | 88.368 | 2.126 | 82.042 | 12.880 | 31.859 | 3.521 | 93.974 | 12.770 | 448.08 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 19 | |
F | 26.575 | 39.793 | 0.132 | 34.601 | 0.832 | 32.124 | 5.043 | 12.475 | 1.379 | 7.359 | |||
p< | 0.004 | 0.002 | 0.731 | 0.002 | 0.403 | 0.002 | 0.075 | 0.017 | 0.293 | 0.023 | |||
ORC | SS | 18.817 | 56.560 | 1.049 | 30.534 | 0.569 | 5.400 | 19.965 | 49.581 | 15.207 | 20.792 | 3.527 | 210.94 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 19 | |
F | 26.679 | 80.191 | 1.487 | 43.291 | 0.806 | 7.656 | 28.306 | 70.297 | 21.560 | 5.896 | |||
p< | 0.004 | 0.0003 | 0.277 | 0.001 | 0.410 | 0.039 | 0.003 | 0.0004 | 0.006 | 0.037 |
Fuc | GlcNH2 | Gal | Glc | Xyl | Man | GalA | GlcA | Total | |
---|---|---|---|---|---|---|---|---|---|
Original | 0.2 (0.0) a | 7.1 (0.1) j | 1.5 (0.1) a,b | 18.4 (0.4) j | 1.1 (0.1) h | 0.5 (0.1) c | n.d. a | 1.4 (0.3) a,b,c | 30.3 (0.7) j |
1 | 0.1 (0.0) a | 21.1 (0.7) a | 0.5 (0.1) g | 38.1 (2.3) a,b | 5.2 (0.2) a | 1.6 (0.1) a,b | 0.1 (0.1) a | 1.6 (0.5) a,b,c | 68.4 (2.9) a |
2 | 0.1 (0.0) a | 20.3 (0.6) a,b | 0.7 (0.0) e,f,g | 36.9 (1.5) a,b,c | 5.1 (0.3) a | 1.8 (0.0) a | 0.2 (0.1) a | 1.2 (0.3) a,b,c | 66.4 (0.9) a,b |
3 | 0.1 (0.0) a | 20.8 (0.3) a | 0.7 (0.0) e,f,g | 31.7 (2.0) d,e,f | 4.9 (0.4) a,b,c | 1.6 (0.1) a,b | 0.3 (0.0) a | 1.2 (0.2) a,b,c | 61.5 (2.6) b,c |
4 | 0.1 (0.0) a | 17.4 (0.6) c,d | 0.6 (0.0) f,g | 40.0 (2.7) a | 4.5 (0.0) a,b,c,d | 1.5 (0.1) a,b | 0.2 (0.2) a | 1.9 (0.5) a,b | 66.2 (2.5) a,b |
5 | 0.2 (0.0) a | 16.5 (0.2) d,e | 0.7 (0.1) e,f,g | 34.8 (0.9) b,c,d,e | 4.3 (0.3) b,c,d,e | 1.5 (0.1) a,b | 0.1 (0.2) a | 2.1 (0.4) a | 60.2 (0.5) c |
6 | 0.2 (0.0) a | 12.6 (1.3) h,i | 1.3 (0.0) a,b,c,d | 26.1 (1.1) g,h,i | 3.3 (0.0) g | 1.4 (0.0) a,b | 0.1 (0.1) a | 1.4 (0.3) a,b,c | 46.3 (0.9) h,i |
7 | 0.2 (0.0) a | 12.3 (0.2) h,i | 1.0 (0.0) c,d,e,f | 27.7 (1.4) f,g,h | 3.2 (0.3) g | 1.3 (0.1) b | 0.2 (0.1) a | 1.5 (0.2) a,b,c | 47.5 (1.9) h,i |
8 | 0.2 (0.0) a | 13.9 (0.2) f,g,h | 1.1 (0.1) b,c,d,e | 32.1 (1.4) c,d,e,f | 3.9 (0.3) d,e,f,g | 1.2 (0.1) b | 0.1 (0.2) a | 1.9 (0.4) b | 54.4 (1.6) d,e,f |
9 | 0.2 (0.0) a | 15.0 (0.4) e,f,g | 0.9 (0.0) d,e,f,g | 22.6 (0.6) i,j | 4.2 (0.1) c,d,e,f | 1.6 (0.0) a,b | 0.2 (0.0) a | 0.7 (0.2) a,b,c | 45.5 (0.7) i |
10 | 0.2 (0.0) a | 13.6 (0.2) f,g,h | 1.1 (0.0) b,c,d,e | 27.3 (1.0) f,g,h,i | 3.6 (0.2) e,f,g | 1.4 (0.1) a,b | 0.2 (0.0) a | 0.9 (0.1) a,b,c | 48.3 (1.4) g,h,i |
11 | 0.2 (0.0) a | 15.3 (0.4) e,f | 1.0 (0.1) c,d,e,f | 27.5 (0.9) f,g,h,i | 4.2 (0.1) c,d,e,f | 1.8 (0.1) a | 0.2 (0.0) a | 1.1 (0.2) a,b,c | 51.5 (1.2) f,g,h |
12 | 0.2 (0.0) a | 11.5 (0.1) i | 1.6 (0.1) a | 28.8 (0.8) f,g,h | 3.2 (0.1) g | 1.5 (0.1) a,b | 0.0 (0.0) a | 1.2 (0.2) a,b,c | 48.1 (0.7) g,h,i |
13 | 0.2 (0.0) a | 15.1 (0.1) e,f,g | 1.0 (0.1) c,d,e,f | 29.9 (0.5) e,f,g | 4.2 (0.0) c,d,e,f | 1.5 (0.0) a,b | 0.2 (0.0) a | 1.1 (0.2) a,b,c | 53.2 (0.1) e,f,g |
14 | 0.2 (0.0) a | 13.4 (0.5) g,h | 1.3 (0.0) a,b,c,d | 26.1 (0.1) g,h,i | 3.6 (0.1) e,f,g | 1.4 (0.0) a,b | 0.2 (0.0) a | 1.0 (0.2) a,b,c | 47.2 (0.4) h,i |
15 | 0.2 (0.0) a | 13.3 (0.6) g,h | 1.3 (0.0) a,b,c,d | 24.2 (0.0) h,i | 3.6 (0.1) e,f,g | 1.2 (0.1) b | n. d. a | 1.0 (0.2) a,b,c | 44.8 (0.6) i |
16 | 0.2 (0.0) a | 18.8 (0.3) b,c | 1.0 (0.0) c,d,e,f | 26.6 (0.7) g,h,i | 5.0 (0.1) a,b | 1.6 (0.0) a,b | 0.3 (0.0) a | 0.8 (0.2) b,c | 54.3 (0.4) d,e,f |
17 | 0.2 (0.0) a | 12.8 (0.3) h,i | 1.3 (0.1) a,b,c,d | 28.9 (0.3) f,g,h | 3.5 (0.0) f,g | 1.2 (0.1) b | n. d. a | 1.2 (0.3) a,b,c | 49.1 (0.4) f,g,h,i |
18 | 0.1 (0.0) a | 15.3 (0.0) e,f | 0.8 (0.1) e,f,g | 34.0 (2.0) b,c,d,e | 4.1 (0.1) d,e,f | 1.4 (0.0) a,b | 0.1 (0.2) a | 1.7 (0.3) a,b,c | 57.5 (1.6) c,d,e |
19 | 0.1 (0.0) a | 15.3 (0.2) e,f | 0.8 (0.1) e,f,g | 35.7 (0.5) a,b,c,d | 4.2 (0.1) c,d,e,f | 1.3 (0.1) b | 0.1 (0.2) a | 1.8 (0.4) a,b,c | 59.4 (0.1) c,d |
20 | 0.2 (0.0) a | 15.4 (0.6) e,f | 1.4 (0.1) a,b,c | 25.0 (0.1) g,h,i | 4.1 (0.0) d,e,f | 1.4 (0.1) a,b | 0.2 (0.1) a | 0.9 (0.2) a,b,c | 48.6 (0.9) g,h,i |
Run | L* | a* | b* | Water Retention Capacity | Oil Retention Capacity |
---|---|---|---|---|---|
1 | 91.0 | −0.113 | 11.39 | 15.2 | 11.3 |
2 | 89.3 | 0.320 | 15.71 | 18.5 | 12.0 |
3 | 82.1 | 1.100 | 17.68 | 18.5 | 11.3 |
4 | 90.6 | −0.470 | 13.41 | 21.3 | 18.9 |
5 | 87.4 | 0.337 | 18.49 | 16.3 | 15.7 |
6 | 90.5 | −0.467 | 18.88 | 8.5 | 7.8 |
7 | 90.3 | −0.360 | 15.24 | 11.3 | 10.8 |
8 | 75.8 | 2.930 | 17.75 | 9.3 | 7.0 |
9 | 86.9 | 0.787 | 21.52 | 11.4 | 12.6 |
10 | 84.7 | 1.517 | 20.37 | 9.9 | 10.4 |
11 | 81.3 | 1.037 | 20.18 | 11.5 | 11.5 |
12 | 81.0 | 2.507 | 22.95 | 9.2 | 8.4 |
13 | 93.8 | −2.623 | 16.37 | 10.6 | 7.4 |
14 | 88.2 | −0.080 | 22.72 | 9.6 | 7.8 |
15 | 89.4 | −0.497 | 22.94 | 5.9 | 7.7 |
16 | 88.9 | −0.677 | 23.61 | 4.2 | 7.7 |
17 | 91.9 | −0.224 | 22.34 | 5.7 | 7.9 |
18 | 89.5 | −0.304 | 22.61 | 4.7 | 6.0 |
19 | 88.8 | −0.273 | 22.52 | 6.2 | 6.9 |
20 | 89.1 | −0.443 | 23.51 | 8.8 | 6.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraga, S.M.; Nunes, F.M. Agaricus bisporus By-Products as a Source of Chitin-Glucan Complex Enriched Dietary Fibre with Potential Bioactivity. Appl. Sci. 2020, 10, 2232. https://doi.org/10.3390/app10072232
Fraga SM, Nunes FM. Agaricus bisporus By-Products as a Source of Chitin-Glucan Complex Enriched Dietary Fibre with Potential Bioactivity. Applied Sciences. 2020; 10(7):2232. https://doi.org/10.3390/app10072232
Chicago/Turabian StyleFraga, Sara M., and Fernando M. Nunes. 2020. "Agaricus bisporus By-Products as a Source of Chitin-Glucan Complex Enriched Dietary Fibre with Potential Bioactivity" Applied Sciences 10, no. 7: 2232. https://doi.org/10.3390/app10072232
APA StyleFraga, S. M., & Nunes, F. M. (2020). Agaricus bisporus By-Products as a Source of Chitin-Glucan Complex Enriched Dietary Fibre with Potential Bioactivity. Applied Sciences, 10(7), 2232. https://doi.org/10.3390/app10072232