Electro-Optical Ion Trap for Experiments with Atom-Ion Quantum Hybrid Systems
Abstract
:Featured Application
Abstract
1. Introduction
2. The Electro-Optical Trap
- : The ions can be trapped in a single minima of the optical lattice, thus forming a disk-shaped crystal.
- : The three trapping frequencies are equal, so the potential is isotropic.
- : The confinement along the interference direction is weaker than the other two. Considering the typical depth of the optical potentials and the Coulomb repulsion, the ions might lie in different minima of the optical lattice.
Loading Ions into the Electro-Optical Trap
3. Trap Design
3.1. Electro-Optical Trap Design
3.2. Paul Trap Design
3.3. The Atomic Source
3.4. Machining Tolerances
3.5. Materials
4. Simulations on the Trapping System
4.1. Electrical Simulations
4.1.1. Paul Trap Stability Diagram
4.1.2. Residual Axial Radiofrequency
4.2. Thermal Simulations
4.2.1. RF Power Dissipation
4.2.2. Ions Loading from Paul Trap to Electro-Optical Trap
4.2.3. Ovens’ Simulations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tomza, M.; Jachymski, K.; Gerritsma, R.; Negretti, A.; Calarco, T.; Idziaszek, Z.; Julienne, P.S. Cold hybrid ion-atom systems. arXiv 2017, arXiv:1708.07832. [Google Scholar] [CrossRef] [Green Version]
- Idziaszek, Z.; Simoni, A.; Calarco, T.; Julienne, P.S. Multichannel quantum-defect theory for ultracold atom-ion collisions. New J. Phys. 2011, 13, 083005. [Google Scholar] [CrossRef]
- Sias, C.; Köhl, M. Hybrid quantum systems of ions and atoms. arXiv 2014, arXiv:1401.3188. [Google Scholar]
- Kollath, C.; Köhl, M.; Giamarchi, T. Scanning tunneling microscopy for ultracold atoms. Phys. Rev. A 2007, 76, 063602. [Google Scholar] [CrossRef] [Green Version]
- Zipkes, C.; Palzer, S.; Sias, C.; Köhl, M. A trapped single ion inside a Bose-Einstein condensate. Nature 2010, 464, 388–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratschbacher, L.; Zipkes, C.; Sias, C.; Köhl, M. Controlling chemical reactions of a single particle. Nat. Phys. 2012, 8, 649–652. [Google Scholar] [CrossRef]
- Hall, F.H.J.; Aymar, M.; Bouloufa-Maafa, N.; Dulieu, O.; Willitsch, S. Light-Assisted Ion-Neutral Reactive Processes in the Cold Regime: Radiative Molecule Formation versus Charge Exchange. Phys. Rev. Lett. 2011, 107, 243202. [Google Scholar] [CrossRef]
- Härter, A.; Hecker Denschlag, J. Cold atom-ion experiments in hybrid traps. Contemp. Phys. 2014, 55, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Cetina, M.; Grier, A.T.; Vuletić, V. Micromotion-Induced Limit to Atom-Ion Sympathetic Cooling in Paul Traps. Phys. Rev. Lett. 2012, 109, 253201. [Google Scholar] [CrossRef]
- Feldker, T.; Fürst, H.; Hirzler, H.; Ewald, N.V.; Mazzanti, M.; Wiater, D.; Tomza, M.; Gerritsma, R. Buffer gas cooling of a trapped ion to the quantum regime. arXiv 2019, arXiv:quant-ph/1907.10926. [Google Scholar] [CrossRef]
- Schneider, C.; Enderlein, M.; Huber, T.; Schaetz, T. Optical trapping of an ion. Nat. Photonics 2010, 4, 772–775. [Google Scholar] [CrossRef] [Green Version]
- Huber, T.; Lambrecht, A.; Schmidt, J.; Karpa, L.; Schaetz, T. A far-off-resonance optical trap for a Ba+ ion. Nat. Commun. 2014, 5, 5587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambrecht, A.; Schmidt, J.; Weckesser, P.; Debatin, M.; Karpa, L.; Schaetz, T. Long lifetimes in optical ion traps. arXiv 2016, arXiv:1609.06429. [Google Scholar]
- Enderlein, M.; Huber, T.; Schneider, C.; Schaetz, T. Single Ions Trapped in a One-Dimensional Optical Lattice. Phys. Rev. Lett. 2012, 109, 233004. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Lambrecht, A.; Weckesser, P.; Debatin, M.; Karpa, L.; Schaetz, T. Optical Trapping of Ion Coulomb Crystals. Phys. Rev. X 2018, 8, 021028. [Google Scholar] [CrossRef] [Green Version]
- Perego, E. A Novel Setup for Trapping and Cooling Barium ions for Atom-ion Experiments. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2019. [Google Scholar]
- Kaur, J.; Singh, S.; Arora, B.; Sahoo, B.K. Magic wavelengths in the alkaline-earth-metal ions. Phys. Rev. A 2015, 92, 031402. [Google Scholar] [CrossRef] [Green Version]
- Sage, J.M.; Kerman, A.J.; Chiaverini, J. Loading of a surface-electrode ion trap from a remote, precooled source. Phys. Rev. A 2012, 86, 013417. [Google Scholar] [CrossRef] [Green Version]
- Cetina, M.; Grier, A.; Campbell, J.; Chuang, I.; Vuletić, V. Bright source of cold ions for surface-electrode traps. Phys. Rev. A 2007, 76, 041401. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Dammalapati, U.; Jungmann, K.; Willmann, L. Magneto-optical trapping of barium. Phys. Rev. A 2009, 79, 041402. [Google Scholar] [CrossRef] [Green Version]
- Naik, D.S.; Kuyumjyan, G.; Pandey, D.; Bouyer, P.; Bertoldi, A. Bose-Einstein condensate array in a malleable optical trap formed in a traveling wave cavity. Quantum Sci. Technol. 2018, 3, 045009. [Google Scholar] [CrossRef] [Green Version]
- Nagourney, W. Quantum Electronics for Atomic Physics; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Herskind, P.F.; Dantan, A.; Albert, M.; Marler, J.P.; Drewsen, M. Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision. J. Phys. B At. Mol. Phys. 2009, 42, 154008. [Google Scholar] [CrossRef] [Green Version]
- Roos, C.F. Controlling the Quantum State of Trapped Ions. Ph.D. Thesis, Leopold-Franzens-Universitat Innsbruck, Innsbruck, Austria, 2000. [Google Scholar]
- Doležal, M.; Balling, P.; Nisbet-Jones, P.B.R.; King, S.A.; Jones, J.M.; Klein, H.A.; Gill, P.; Lindvall, T.; Wallin, A.E.; Merimaa, M.; et al. Analysis of thermal radiation in ion traps for optical frequency standards. Metrologia 2015, 52, 842. [Google Scholar] [CrossRef] [Green Version]
- Brun, R.; Rademakers, F. ROOT—An Object Oriented Data Analysis Framework. Nucl. Inst. Methods Phys. Res. Sect. A 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Singer, K.; Poschinger, U.; Murphy, M.; Ivanov, P.; Ziesel, F.; Calarco, T.; Schmidt-Kaler, F. Colloquium: Trapped ions as quantum bits: Essential numerical tools. Rev. Mod. Phys. 2010, 82, 2609–2632. [Google Scholar] [CrossRef] [Green Version]
- Saad, Y.; Schultz, M. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Greengard, L.; Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys. 1987, 73, 325–348. [Google Scholar] [CrossRef]
- Landa, H.; Drewsen, M.; Reznik, B.; Retzker, A. Classical and quantum modes of coupled Mathieu equations. J. Phys. A Math. Theor. 2012, 45, 455305. [Google Scholar] [CrossRef]
- Likins, P.W.; Lindh, K.G. Infinite determinant methods for stability analysis of periodic-coefficient differential equations. AIAA J. 1970, 8, 680–686. [Google Scholar] [CrossRef]
- Ozakin, A.; Shaikh, F. Stability analysis of surface ion traps. arXiv 2011, arXiv:quant-ph/1109.2160, arXiv:quant–ph/11092160. [Google Scholar]
- Detti, A.; De Pas, M.; Duca, L.; Perego, E.; Sias, C. A compact radiofrequency drive based on interdependent resonant circuits for precise control of ion traps. Rev. Sci. Instrum. 2019, 90, 023201. [Google Scholar] [CrossRef] [Green Version]
- Berkeland, D.J.; Miller, J.D.; Bergquist, J.C.; Itano, W.M.; Wineland, D.J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 1998, 83, 5025–5033. [Google Scholar] [CrossRef] [Green Version]
- Leschhorn, G.; Hasegawa, T.; Schaetz, T. Efficient photo-ionization for barium ion trapping using a dipole-allowed resonant two-photon transition. Appl. Phys. B 2012, 108, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Berto, F.; Sias, C. Prospects for single photon sideband cooling in fermionic Lithium. arXiv 2019, arXiv:physics.atom-ph/1912.08104. [Google Scholar]
- Perego, E.; Pomponio, M.; Detti, A.; Duca, L.; Sias, C.; Calosso, C.E. A scalable hardware and software control apparatus for experiments with hybrid quantum systems. Rev. Sci. Instrum. 2018, 89, 113116. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perego, E.; Duca, L.; Sias, C. Electro-Optical Ion Trap for Experiments with Atom-Ion Quantum Hybrid Systems. Appl. Sci. 2020, 10, 2222. https://doi.org/10.3390/app10072222
Perego E, Duca L, Sias C. Electro-Optical Ion Trap for Experiments with Atom-Ion Quantum Hybrid Systems. Applied Sciences. 2020; 10(7):2222. https://doi.org/10.3390/app10072222
Chicago/Turabian StylePerego, Elia, Lucia Duca, and Carlo Sias. 2020. "Electro-Optical Ion Trap for Experiments with Atom-Ion Quantum Hybrid Systems" Applied Sciences 10, no. 7: 2222. https://doi.org/10.3390/app10072222
APA StylePerego, E., Duca, L., & Sias, C. (2020). Electro-Optical Ion Trap for Experiments with Atom-Ion Quantum Hybrid Systems. Applied Sciences, 10(7), 2222. https://doi.org/10.3390/app10072222