Velocity-Aware Handover Self-Optimization Management for Next Generation Networks
Abstract
:1. Introduction
2. System Model
3. Velocity-Based Optimization Algorithm
3.1. HO Problem
3.2. Proposed Algorithm
Algorithm 1 Velocity-based optimization algorithm |
1: begin |
2: Set up initial values of TTT and HOM |
3: if then |
4: |
5: else |
6: if then |
7: Update according to condition 1. |
8: Run Algorithm 2. |
9: Update |
10: else if then |
11: Update according to condition 3. |
12: Run Algorithm 2. |
13: Update |
14: else |
15: Update according to condition 2. |
16: Run Algorithm 2. |
17: Update |
18: end if |
19: |
20: |
21: calculate HOF, HOPP, RLF |
22: end if |
23: end |
Algorithm 2 HO Trigger and Decision |
1: if then |
2: if then |
3: |
4: Send HO request |
5: else if |
6: then |
7: Run Trigger Timer |
8: end if |
9: end if |
4. Simulation and Performance Analysis
4.1. Simulation Scenario
4.2. Performance Evaluation
4.2.1. Fixed Values of HCPs
4.2.2. Proposed Algorithm
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3GPP | 3rd generation partnership project |
4G | Fourth generation |
5G | Fifth generation |
AWGN | Additive white Gaussian noise |
BS | Base station |
HCP | Handover control parameter |
HetNets | Heterogeneous networks |
HO | Handover |
HOF | Handover failure |
HOM | Handover margin |
HOP | Handover probability |
HOPP | Handover ping-pong |
Mmwave | Millimeter wave |
MR | Measurement report |
MRO | Mobility robustness optimization |
NSA | Non-standalone |
QoS | Quality of service |
RLF | Radio link failure |
RSRP | Reference signal received power |
SA | Standalone |
SINR | Signal-to-noise-ratio |
TTT | Time to trigger |
UDSC | Ultra-dense small cell |
UE | User equipment |
UHO | Unnecessary handover |
References
- Universal Mobile Telecommunications System (UMTS), Mobility Enhancementsin Heterogeneous Networks; 3GPP TR 36.839, Tech. Report; 3GPP: Valbonne, France, 2012.
- Ding, M.; Lopez-Perez, D.; Claussen, H.; Kaafar, M.A. On the fundamental characteristics of ultra-dense small cell networks. IEEE Netw. 2018, 32, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Technical Specification Group Services and System Aspects; Release 15, Description; 3GPP TR 21.915, Tech. Report; 3GPP: Valbonne, France, 2019.
- User Equipment (UE) Radio Transmission and, Reception; Part 1: Range 1 Standalone; 3GPP TR 38.101, Tech. Report; 3GPP: Valbonne, France, 2018.
- Ericsson, H.E. Modified RRH Arrangement for HST SFN; 3GPP: Valbonne, France, 2019. [Google Scholar]
- Castro-Hernandez, D.; Paranjape, R. Optimization of Handover Parameters for LTE/LTE-A In-building Systems. IEEE Trans. Veh. Technol. 2017, 67, 5260–5273. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, W.; Liu, Y. Handover Probability Analysis of Anchor-Based Multi-Connectivity in 5G User-Centric Network. IEEE Wirel. Commun. Lett. 2018, 8, 396–399. [Google Scholar] [CrossRef]
- Evolved Universal Terrestrial Radio Access (e-utra); User Equipment (ue) Procedures in Idle Mode; Release 14 (Tech. Rep. No. TS36.304); 3GPP: Valbonne, France, 2018.
- Nie, S.; Wu, D.; Zhao, M.; Gu, X.; Zhang, L.; Lu, L. An Enhanced Mobility State Estimation Based Handover Optimization Algorithm in LTE-A Self-organizing Network. Procedia Comput. Sci. 2016, 52, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, R.; Deshmukh, S. Analysis and Design of an Efficient Handoff Management Strategy via Velocity Estimation in HetNets. Trans. Emerg. Telecommun. Technol. 2019, e3642. [Google Scholar] [CrossRef]
- Ray, R.P.; Tang, L. Hysteresis Margin and Load Balancing for Handover in Heterogeneous Network. Int. J. Future Comput. Commun. 2016, 4, 231. [Google Scholar] [CrossRef] [Green Version]
- Shayea, I.; Ismail, M.; Nordin, R.; Ergen, M.; Ahmad, N.; Abdullah, N.F.; Alhammadi, A.; Mohamad, H. New weight function for adapting handover margin level over contiguous carrier aggregation deployment scenarios in LTE-advanced system. Wirel. Pers. Commun. 2019, 108, 1179–1199. [Google Scholar] [CrossRef]
- Shayea, I.; Ismail, M.; Nordin, R.; Mohamad, H.; Abd Rahman, T.; Abdullah, N.F. Novel Handover Optimization with a Coordinated Contiguous Carrier Aggregation Deployment Scenario in LTE-Advanced Systems. Mob. Infor. Syst. 2016, 2016, 4939872. [Google Scholar] [CrossRef] [Green Version]
- Shayea, I.; Ismail, M.; Nordin, R.; Mohamad, H. Adaptive handover decision algorithm based on multi-influence factors through carrier aggregation implementation in LTE-advanced system. J. Comput. Netw. Commun. 2014, 2014, 739504. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Wen, X.; Zhang, H.; Zheng, W. A Self-optimizing Mobility Management Scheme Based on Cell ID Information in High Velocity Environment. In Proceedings of the IEEE Second International Conference on Computer and Network Technology, Bangkok, Thailand, 23–25 April 2010; pp. 285–288. [Google Scholar]
- Saeed, M.; Kamal, H.; El-Ghoneimy, M. Novel Type-2 Fuzzy Logic Technique for Handover Problems in a Heterogeneous Network. Eng. Optim. 2018, 50, 1533–1543. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Baig, I.; Das, D. Self organizing method for handover performance optimization in LTE-advanced network. Comput. Commun. 2017, 110, 151–163. [Google Scholar] [CrossRef]
- Alhammadi, A.; Roslee, M.; Alias, M.Y.; Shayea, I.; Alriah, S.; Abas, A.B. Advanced Handover Self-optimization Approach for 4G/5G HetNets Using Weighted Fuzzy Logic Control. In Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL), Graz, Austria, 3–5 July 2019; pp. 1–6. [Google Scholar]
- Alhammadi, A.; Roslee, M.; Alias, M.Y.; Shayea, I.; Alraih, S. Dynamic Handover Control Parameters for LTE-A/5G Mobile Communications. In Proceedings of the 2018 Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia, 15–16 November 2018; pp. 39–44. [Google Scholar]
- Abdulraqeb, A.; Mardeni, R.; Yusoff, A.M.; Ibraheem, S.; Saddam, A. Self-optimization of Handover Control Parameters for Mobility Management in 4G/5G Heterogeneous Networks. Autom. Control Comput. Sci. 2019, 53, 441–451. [Google Scholar] [CrossRef]
- 5G Study on Channel Model for Frequencies from 0.5 to 100 GHz; 3GPP TR 38.901, Tech. Report; 3GPP: Valbonne, France, 2018.
- Alhammadi, A.; Roslee, M.; Alias, M.Y.; Shayea, I.; Alraih, S.; Mohamed, K.S. Auto Tuning Self-Optimization Algorithm for Mobility Management in LTE-A and 5G HetNets. IEEE Access 2019, 8, 294–304. [Google Scholar] [CrossRef]
- Lee, Y.L.; Loo, J.; Chuah, T.C.; Wang, L.C. Dynamic network slicing for multitenant heterogeneous cloud radio access networks. IEEE Trans. Wirel. Commun. 2018, 7, 2146–2161. [Google Scholar] [CrossRef]
- Universal Mobile Telecommunications System (UMTS), Radio Resource Control (RRC) Protocol Specification; 3GPP TS 36.331, Tech. Report; 3GPP: Valbonne, France, 2018.
- Hsieh, P.J.; Lin, W.S.; Lin, K.H.; Wei, H.Y. Dual-connectivity prevenient handover scheme in control/user-plane split networks. IEEE Trans. Veh. Technol. 2018, 67, 3545–3560. [Google Scholar] [CrossRef]
- Polese, M.; Giordani, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Improved Handover Through Dual Connectivity in 5G MmWave Mobile Networks. IEEE J. Sel. Areas Commun. 2017, 35, 2069–2084. [Google Scholar] [CrossRef] [Green Version]
Notation | Description |
---|---|
Set of UE | |
Number of macro BSs | |
Number of small BSs | |
Velocity for UE u | |
Path loss model | |
Reference distance between UE u and BS | |
Distance between UE u and BS k | |
Wavelength at carrier frequency | |
Gaussian random variable with zero | |
mean and variance | |
SINR experienced by UE u at BS k | |
Binary association indicator of user u | |
Channel gain for UE u at BSk | |
Received signal power by UE u at BS k | |
AWGN power | |
Threshold level for HO decision | |
UEu Speed level at time t | |
Reference speed (medium speed)for entire simulation | |
Serving RSRP UE u at BS k | |
Target RSRP for UE u at BS k | |
Updated HOM for each UE u at time t | |
Updated TTT for each UE u at time t | |
Number of failure HO | |
Number of successful HO |
Conditions | Speeds | ||
---|---|---|---|
Condition 1 | −Step | −Step | |
+Step | +Step | ||
+Step | +Step | ||
Condition 2 | −Step | −Step | |
None | None | ||
+Step | +Step | ||
Condition 3 | −Step | −Step | |
−Step | −Step | ||
−Step | −Step |
Parameter | Value | |
---|---|---|
4G Macro Cell | 5G Small Cell | |
Carrier frequency (GHz) | 2.1 | 28 [26] |
Number of BS | 61 | 183 |
Number of UEs/BS | 100 | 200 [7] |
Cell radius (m) | 500 | 200 |
Cell height (m) | 25 | 15 |
System bandwidth (MHz) | 20 | 500 |
Transmit power (dBm) | 46 | 30 [7] |
Shadowing standard deviation (dB) | 8 | 10 |
Simulation area (Km) | 8 × 8 | |
UE height (m) | 1.5 | |
Mobility model | Random direction model | |
Noise figure (dB) | 9 | |
Thermal noise density (dBm/Hz) | −174 | |
TTT (ms) | Adaptive | |
HOM (dB) | Adaptive | |
HO execution time (ms) | 50 |
Set | HCPs | |
---|---|---|
HOM (dB) | TTT (ms) | |
Set1 | 5 | 480 |
Set2 | 10 | 2560 |
Set3 | 8 | 1500 |
Set4 | 2 | 512 |
Set5 | 10 | 320 |
Set6 | 0 | 40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhammadi, A.; Roslee, M.; Alias, M.Y.; Shayea, I.; Alquhali, A. Velocity-Aware Handover Self-Optimization Management for Next Generation Networks. Appl. Sci. 2020, 10, 1354. https://doi.org/10.3390/app10041354
Alhammadi A, Roslee M, Alias MY, Shayea I, Alquhali A. Velocity-Aware Handover Self-Optimization Management for Next Generation Networks. Applied Sciences. 2020; 10(4):1354. https://doi.org/10.3390/app10041354
Chicago/Turabian StyleAlhammadi, Abdulraqeb, Mardeni Roslee, Mohamad Yusoff Alias, Ibraheem Shayea, and Abdullah Alquhali. 2020. "Velocity-Aware Handover Self-Optimization Management for Next Generation Networks" Applied Sciences 10, no. 4: 1354. https://doi.org/10.3390/app10041354
APA StyleAlhammadi, A., Roslee, M., Alias, M. Y., Shayea, I., & Alquhali, A. (2020). Velocity-Aware Handover Self-Optimization Management for Next Generation Networks. Applied Sciences, 10(4), 1354. https://doi.org/10.3390/app10041354