Physicochemical Properties of African Catfish Mucus and Its Effect on the Stability of Soya Milk Emulsions
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Emulsion Formulation
2.4. Transmission Electron Microscopy and Particle Size Analysis
2.5. Zeta Potential and Particle Size Measurement
2.6. Absorption Bands Analysis
2.7. Stability Studies
2.8. Data Analysis
3. Results and Discussion
3.1. Appearance of Unmagnified Freeze-Dried ACM
3.2. Structural Characteristics of Freeze-Dried ACM in Milli-Q Water
3.3. Structural Characteristics of ACM-Stabilized Soya Milk Emulsion
3.4. Functional Group Characteristics of Freeze-Dried ACM
3.5. Functional Group Characteristics of ACM-Stabilized Soya Milk Emulsion
3.6. Stability of Freeze-Dried African Catfish Mucus in Milli-Q Water Using Zeta Potential
3.7. Stability of ACM-Stabilized Soya Milk Emulsions
3.8. Mucoadhesive Property of African Catfish Mucus
4. Conclusions
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Böcker, L.; Ruühs, P.A.; Böni, L.; Fischer, P.; Kuster, S. Fiber-enforced hydrogels: Hagfish slime stabilized with biopolymers including κ-carrageenan. ACS Biomater. Sci. Eng. 2015, 2, 90–95. [Google Scholar]
- Böni, L.; Fischer, P.; Böcker, L.; Kuster, S.; Rühs, P.A. Hagfish slime and mucin flow properties and their implications for defense. Sci. Rep. 2016, 6, 30371. [Google Scholar] [CrossRef] [PubMed]
- Reverter, M.; Tapissier-Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Biological and ecological roles of external fish mucus: A review. Fishes 2018, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Sánchez, J.; Terova, G.; Simó-Mirabet, P.; Rimoldi, S.; Folkedal, O.; Calduch-Giner, J.A.; Olsen, R.E.; Sitjà-Bobadilla, A. Skin mucus of gilthead sea bream (Sparus aurata L.). Protein mapping and regulation in chronically stressed fish. Front. Physiol. 2017, 8, 34. [Google Scholar]
- Bahadir, T.; Çelebi, H.; Simsek, I.; Tulun, S. Antibiotic applications in fish farms and environmental problems. Turk. J. Eng. 2019, 3, 60. [Google Scholar]
- Conceição, P.; Levine, S.; Lipton, M.; Warren-Rodríguez, A. Toward a food secure future: Ensuring food security for sustainable human development in Sub-Saharan Africa. Food Policy 2016, 60, 1–9. [Google Scholar] [CrossRef]
- Wikström, F.; Verghese, K.; Auras, R.; Olsson, A.; Williams, H.; Wever, R.; Grönman, K.; Kvalvåg Pettersen, M.; Møller, H.; Soukka, R. Packaging strategies that save food: A research agenda for 2030. J. Ind. Ecol. 2019, 23, 532–540. [Google Scholar] [CrossRef]
- Béné, C.; Arthur, R.; Norbury, H.; Allison, E.H.; Beveridge, M.; Bush, S.; Campling, L.; Leschen, W.; Little, D.; Squires, D. Contribution of fisheries and aquaculture to food security and poverty reduction: Assessing the current evidence. World Dev. 2016, 79, 177–196. [Google Scholar] [CrossRef]
- Stevens, J.R.; Newton, R.W.; Tlusty, M.; Little, D.C. The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 2018, 90, 115–124. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Lu, W.; Kelly, A.L.; Miao, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Technol. 2016, 47, 1–9. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef] [PubMed]
- Gama, A.P.; Hung, Y.-C.; Adhikari, K. Optimization of Emulsifier and Stabilizer Concentrations in a Model Peanut-Based Beverage System: A Mixture Design Approach. Foods 2019, 8, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadros, T.F. Interfacial Phenomena and Colloid Stability: Industrial Applications; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2015. [Google Scholar]
- Li, J.-J.; Dong, M.; Liu, Y.-L.; Zhang, L.-L.; Zhang, Y.; Yang, Z.-Y.; Ren, J.-N.; Pan, S.-Y.; Fan, G. Effect of Food Emulsifiers on Aroma Release. Molecules 2016, 21, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, I.; Nakajima, M. Effect of emulsifiers on the preparation of food-grade oil-in-water emulsions using a straight-through extrusion filter. Eur. J. Lipid Sci. Technol. 2002, 104, 720–727. [Google Scholar] [CrossRef]
- Tan, C.P.; Nakajima, M. Effect of polyglycerol esters of fatty acids on physicochemical properties and stability of β-carotene nanodispersions prepared by emulsification/evaporation method. J. Sci. Food Agric. 2005, 85, 121–126. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J. Surfactants used in food industry: A review. J. Dispers. Sci. Technol. 2009, 30, 1363–1383. [Google Scholar] [CrossRef]
- McClements, D.J.; Gumus, C.E. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Fasinu, E.G.; Ikhu-Omoregbe, D.I.; Jideani, V.A. Influence of selected physicochemical factors on the stability of emulsions stabilized by Bambara groundnut flour and starch. J. Food Sci. Technol. 2015, 52, 7048–7058. [Google Scholar] [CrossRef]
- Maphosa, Y.; Jideani, V.A.; Adeyi, O. Effect of soluble dietary fibres from Bambara groundnut varieties on the stability of orange oil beverage emulsion. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.; Sher, A.; Rousset, P.; Decker, E.A.; McClements, D.J. Formulation of food emulsions using natural emulsifiers: Utilization of quillaja saponin and soy lecithin to fabricate liquid coffee whiteners. J. Food Eng. 2017, 209, 1–11. [Google Scholar] [CrossRef]
- Weigel, F.; Weiss, J.; Decker, E.A.; McClements, D.J. Lutein-enriched emulsion-based delivery systems: Influence of emulsifiers and antioxidants on physical and chemical stability. Food Chem. 2018, 242, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, Q.; McClements, D.J. Enhancing the formation and stability of emulsions using mixed natural emulsifiers: Hydrolyzed rice glutelin and quillaja saponin. Food Hydrocoll. 2019, 89, 396–405. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Et Biophys. Acta (Bba)-Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, L.; Amado, A.M.; Critchley, A.T.; Van de Velde, F.; Ribeiro-Claro, P.J. Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll. 2009, 23, 1903–1909. [Google Scholar] [CrossRef] [Green Version]
- Glassford, S.E.; Byrne, B.; Kazarian, S.G. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim. Et Biophys. Acta (Bba)-Proteins Proteom. 2013, 1834, 2849–2858. [Google Scholar] [CrossRef] [Green Version]
- Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J.-M.; Raussens, V. ATR-FTIR: A “rejuvenated” tool to investigate amyloid proteins. Biochim. Et Biophys. Acta (Bba)-Biomembr. 2013, 1828, 2328–2338. [Google Scholar] [CrossRef]
- Fernando, I.; Sanjeewa, K.; Samarakoon, K.W.; Lee, W.W.; Kim, H.-S.; Kim, E.-A.; Gunasekara, U.; Abeytunga, D.; Nanayakkara, C.; de Silva, E. FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae. Algae 2017, 32, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Staniszewska, E.; Malek, K.; Baranska, M. Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 981–986. [Google Scholar] [CrossRef]
- Moghaddam, L.; Rencoret, J.; Maliger, V.R.; Rackemann, D.W.; Harrison, M.D.; Gutiérrez, A.; del Riéo, J.C.; Doherty, W.O. Structural characteristics of bagasse furfural residue and its lignin component. An NMR, Py-GC/MS, and FTIR study. ACS Sustain. Chem. Eng. 2017, 5, 4846–4855. [Google Scholar] [CrossRef]
- Angulo, D.E.L.; do Amaral Sobral, P.J. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. Int. J. Biol. Macromol. 2016, 92, 645–653. [Google Scholar] [CrossRef]
- Lei, Y.; Hannoufa, A.; Christensen, D.; Shi, H.; Prates, L.; Yu, P. Molecular Structural Changes in Alfalfa Detected by ATR-FTIR Spectroscopy in Response to Silencing of TT8 and HB12 Genes. Int. J. Mol. Sci. 2018, 19, 1046. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Feng, X.; Zhang, H.; Yan, X.; Peng, Q.; Yu, P. Using vibrational ATR-FTIR spectroscopy with chemometrics to reveal faba CHO molecular spectral profile and CHO nutritional features in ruminant systems. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Fudge, D.S.; Schorno, S. The hagfish gland thread cell: A fiber-producing cell involved in predator defense. Cells 2016, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Drapala, K.P.; Mulvihill, D.M.; O’Mahony, J.A. A review of the analytical approaches used for studying the structure, interactions and stability of emulsions in nutritional beverage systems. Food Struct. 2018, 16, 27–42. [Google Scholar] [CrossRef]
- Zielke, C.; Stradner, A.; Nilsson, L. Characterization of cereal β-glucan extracts: Conformation and structural aspects. Food Hydrocoll. 2018, 79, 218–227. [Google Scholar] [CrossRef]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.-I.; Williams, M. Feeding 9 billion by 2050–Putting fish back on the menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.Y.; Tran, N.; Pethiyagoda, S.; Crissman, C.C.; Sulser, T.B.; Phillips, M.J. Prospects and challenges of fish for food security in Africa. Glob. Food Secur. 2019, 20, 17–25. [Google Scholar] [CrossRef]
- Adeyi, O.; Ikhu-Omoregbe, D.; Jideani, V. Emulsion stability and steady shear characteristics of concentrated oil-in-water emulsion stabilized by gelatinized bambara groundnut flour. Asian J. Chem. 2014, 26, 4995–5002. [Google Scholar] [CrossRef]
- Agbekpornu, H.; Yeboah, D.; Pappoe, A.; Ennin, J.E.; Oyih, M. The State of Farm Raised Catfish Consumption in Ghana: A Case of the Ashanti Region. Curr. J. Appl. Sci. Technol. 2017, 25, 1–14. [Google Scholar] [CrossRef]
- Lee, M.-K.; Nam, J. The determinants of live fish consumption frequency in South Korea. Food Res. Int. 2019, 120, 382–388. [Google Scholar] [CrossRef]
- Obiero, K.; Meulenbroek, P.; Drexler, S.; Dagne, A.; Akoll, P.; Odong, R.; Kaunda-Arara, B.; Waidbacher, H. The contribution of fish to food and nutrition security in Eastern Africa: Emerging trends and future outlooks. Sustainability 2019, 11, 1636. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Chia, L.-S.; Pauls, K.P. Protein-Based Bioproducts. In Plant Bioproducts; Springer: Berlin/Heidelberg, Germany, 2018; pp. 143–175. [Google Scholar]
- Guo, M.; Wang, G. Milk protein polymer and its application in environmentally safe adhesives. Polymers 2016, 8, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, J.E.; Rowe, S.; Lotze, H.K. Expansion of hagfish fisheries in Atlantic Canada and worldwide. Fish. Res. 2015, 161, 24–33. [Google Scholar] [CrossRef]
- Böni, L.; Rühs, P.A.; Windhab, E.J.; Fischer, P.; Kuster, S. Gelation of soy milk with hagfish exudate creates a flocculated and fibrous emulsion-and particle gel. PLoS ONE 2016, 11, e0147022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuster, S.; Böni, L.J.; Fischer, P.; Rühs, P.A.; Windhab, E.J. About hagfish, effective hydrogels and protein fiber enriched Tofu—An overview from our published work. In Proceedings of the General Information about Hagfish for Nestlé PTC Singen, Singen, Germany, 19 December 2017. [Google Scholar]
- Elavarasi, K.; Ranjini, S.; Rajagopal, T.; Rameshkumar, G.; Ponmanickam, P. Bactericidal proteins of skin mucus and skin extracts from fresh water fishes, Clarias batrachus and Tilapia mossambicus. Thai J. Pharm. Sci. 2013, 37, 194–200. [Google Scholar]
- Guardiola, F.A.; Cuartero, M.; del Mar Collado-González, M.; Baños, F.G.D.; Cuesta, A.; Moriñigo, M.Á.; Esteban, M.Á. Terminal carbohydrates abundance, immune related enzymes, bactericidal activity and physico-chemical parameters of the Senegalese sole (Solea senegalensis, Kaup) skin mucus. Fish Shellfish. Immunol. 2017, 60, 483–491. [Google Scholar] [CrossRef]
- Gobinath, R.A.C.; Ravichandran, S. Antimicrobial peptide from the epidermal mucus of some estuarine cat fishes. World App. Sci. J. 2011, 12, 256–260. [Google Scholar]
- Tyor, A.K.; Kumari, S. Biochemical characterization and antibacterial properties of fish skin mucus of fresh water fish, hypophthalmichthys nobilis. Int. J. Pharm. Pharm. Sci. 2016, 8, 132–136. [Google Scholar]
- Mahadevan, G.; Mohan, K.; Vinoth, J.; Ravi, V. Biotic potential of mucus extracts of giant mudskipper Periophthalmodon schlosseri (Pallas, 1770) from Pichavaram, southeast coast of India. J. Basic Appl. Zool. 2019, 80, 13. [Google Scholar] [CrossRef] [Green Version]
- Ross, N.W.; Firth, K.J.; Wang, A.; Burka, J.F.; Johnson, S.C. Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis. Aquat. Org. 2000, 41, 43–51. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Cuesta, A.; Arizcun, M.; Meseguer, J.; Esteban, M.A. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). Fish Shellfish. Immunol. 2014, 36, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Herr, J.; Winegard, T.; O’Donnell, M.; Yancey, P.; Fudge, D.S. Stabilization and swelling of hagfish slime mucin vesicles. J. Exp. Biol. 2010, 213, 1092–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SABS. South African National Standard: The Care and the Use of Animals for Scientific Purposes, SANS 10386:2008; SABS South African Bureau of Standards: Groenkloof, Pretoria, South Africa, 2008.
- Kasiri, N.; Fathi, M. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 2018, 106, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Jun, S.; Kim, I.; Jin, S.M.; Kim, J.G.; Shin, T.J.; Lee, E. Stepwise Drug-Release Behavior of Onion-Like Vesicles Generated from Emulsification-Induced Assembly of Semicrystalline Polymer Amphiphiles. Adv. Funct. Mater. 2015, 25, 4570–4579. [Google Scholar] [CrossRef]
- Nieto de Castro, C.A.; Vieira, S.I.; Lourenço, M.J.; Murshed, S. Understanding Stability, Measurements, and Mechanisms of Thermal Conductivity of Nanofluids. J. Nanofluids 2017, 6, 804–811. [Google Scholar] [CrossRef]
- Dokić, L.; Krstonošić, V.; Nikolić, I. Physicochemical characteristics and stability of oil-in-water emulsions stabilized by OSA starch. Food Hydrocoll. 2012, 29, 185–192. [Google Scholar] [CrossRef]
- Zide, D.; Fatoki, O.; Oputu, O.; Opeolu, B.; Nelana, S.; Olatunji, O. Zeolite ‘adsorption’capacities in aqueous acidic media; The role of acid choice and quantification method on ciprofloxacin removal. Microporous Mesoporous Mater. 2018, 255, 226–241. [Google Scholar] [CrossRef]
- Böni, L.J.; Zurflüh, R.; Widmer, M.; Fischer, P.; Windhab, E.J.; Rühs, P.A.; Kuster, S. Hagfish slime exudate stabilization and its effect on slime formation and functionality. Biol. Open 2017, 6, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, I.P.; Steiner, C.; Schmutzler, M.; Wilcox, M.D.; Veldhuis, G.J.; Pearson, J.P.; Huck, C.W.; Salvenmoser, W.; Bernkop-Schnürch, A. Mucus permeating carriers: Formulation and characterization of highly densely charged nanoparticles. Eur. J. Pharm. Biopharm. 2015, 97, 273–279. [Google Scholar] [CrossRef]
- Trapella, C.; Rizzo, R.; Gallo, S.; Alogna, A.; Bortolotti, D.; Casciano, F.; Zauli, G.; Secchiero, P.; Voltan, R. HelixComplex snail mucus exhibits pro-survival, proliferative and pro-migration effects on mammalian fibroblasts. Sci. Rep. 2018, 8, 17665. [Google Scholar] [CrossRef]
- Patel, M.M.; Smart, J.D.; Nevell, T.G.; Ewen, R.J.; Eaton, P.J.; Tsibouklis, J. Mucin/poly (acrylic acid) interactions: A spectroscopic investigation of mucoadhesion. Biomacromolecules 2003, 4, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Reneeta, N.P.; Thiyonila, B.; Aathmanathan, V.S.; Ramya, T.; Chandrasekar, P.; Subramanian, N.; Prajapati, V.K.; Krishnan, M. Encapsulation and Systemic Delivery of 5-Fluorouracil Conjugated with Silkworm Pupa Derived Protein Nanoparticles for Experimental Lymphoma Cancer. Bioconjugate Chem. 2018, 29, 2994–3009. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, L.; McArdle, P.; Ektefan, M.; Chiniforoshan, H. Synthesis, crystal structure, spectroscopic and biological properties of mixed ligand complexes of cadmium (II), cobalt (II) and manganese (II) valproate with 1, 10-phenanthroline and imidazole. Inorg. Chim. Acta 2016, 439, 138–144. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Revathi, A.; Gunasekaran, G. Studies on anticancer, haemolytic activity and chemical composition of crude epidermal mucus of fish Mugil cephalus. Int. J. Fish. Aquat. Stud. 2016, 4, 438–443. [Google Scholar]
- Lewis, A.; Jones, K.; Lewis, K.; Jones, S.; Lewis, P. Detection of Lewis antigen structural change by FTIR spectroscopy. Carbohydr. Polym. 2013, 92, 1294–1301. [Google Scholar] [CrossRef]
- Monaghan, M.G.; Holeiter, M.; Brauchle, E.; Layland, S.L.; Lu, Y.; Deb, A.; Pandit, A.; Nsair, A.; Schenke-Layland, K. Exogenous miR-29B delivery through a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium. Tissue Eng. Part A 2018, 24, 57–67. [Google Scholar] [CrossRef]
- Stone, N.; Kendall, C.; Shepherd, N.; Crow, P.; Barr, H. Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J. Raman Spectrosc. 2002, 33, 564–573. [Google Scholar] [CrossRef]
- Alves, A.; Caridade, S.G.; Mano, J.F.; Sousa, R.A.; Reis, R.L. Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr. Res. 2010, 345, 2194–2200. [Google Scholar] [CrossRef]
- Varki, A.; Schnaar, R.L.; Schauer, R. Sialic acids and other nonulosonic acids. In Essentials of Glycobiology [Internet], 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2017. [Google Scholar]
- Lamriben, L.; Graham, J.B.; Adams, B.M.; Hebert, D.N. N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle. Traffic 2016, 17, 308–326. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Zhong, G.; Cai, C.; Chen, C.; Chen, X. Rapid and efficient separation of glycoprotein using pH double-responsive imprinted magnetic microsphere. Talanta 2017, 169, 98–103. [Google Scholar] [CrossRef]
- Cheong, A.M.; Tan, K.W.; Tan, C.P.; Nyam, K.L. Kenaf (Hibiscus cannabinus L.) seed oil-in-water Pickering nanoemulsions stabilised by mixture of sodium caseinate, Tween 20 and β-cyclodextrin. Food Hydrocoll. 2016, 52, 934–941. [Google Scholar] [CrossRef]
- Zhai, X.; Lin, D.; Liu, D.; Yang, X. Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions. Food Res. Int. 2018, 103, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankhla, A.; Sharma, R.; Yadav, R.S.; Kashyap, D.; Kothari, S.; Kachhwaha, S. Biosynthesis and characterization of cadmium sulfide nanoparticles–an emphasis of zeta potential behavior due to capping. Mater. Chem. Phys. 2016, 170, 44–51. [Google Scholar] [CrossRef]
- Konkena, B.; Vasudevan, S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through p K a measurements. J. Phys. Chem. Lett. 2012, 3, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Luo, L.; Liu, C.; McClements, D.J. Utilization of anionic polysaccharides to improve the stability of rice glutelin emulsions: Impact of polysaccharide type, pH, salt, and temperature. Food Hydrocoll. 2017, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Albaldawi, M. Chemical and Physical Strategies Promoting Nanoparticle Permeation Through Intestinal Mucus Barrier. Ph.D. Thesis, Cardiff University, Cardiff, Wales, UK, 2015. [Google Scholar]
- Mahdizadeh Barzoki, Z.; Emam-Djomeh, Z.; Mortazavian, E.; Akbar Moosavi-Movahedi, A.; Rafiee Tehrani, M. Formulation, in vitro evaluation and kinetic analysis of chitosan–gelatin bilayer muco-adhesive buccal patches of insulin nanoparticles. J. Microencapsul. 2016, 33, 613–624. [Google Scholar] [CrossRef]
- Vingerhoeds, M.H.; Blijdenstein, T.B.; Zoet, F.D.; van Aken, G.A. Emulsion flocculation induced by saliva and mucin. Food Hydrocoll. 2005, 19, 915–922. [Google Scholar] [CrossRef]
Wave Number (CM−1) | Band Assignments | References |
---|---|---|
3301 | Broad peak stretching vibrations of hydroxyl groups of hydrophilic amino acids | [64] |
3080 | Defined aromatic overtone, due to aromatic amino acids | [65] |
2958 | Mucus/glycoprotein CH2 out of plane vibration | [66,67] |
2924 | CH2 symmetric and out of plane vibration | [32] |
1634 | Amide stretch, β-sheets absorption bands; Amide I | [64] |
1539 | Aromatic C=C bending or C=C stretch in a ring; Amide II | [65] |
1414 | C–O of carbonyl COO group accepting zero or one H-bond | [29] |
1136 | Anti-symmetric C–O–C glycoside bond; C–-O strong bond stretch; | [68] |
1040 | Mucus/glycoprotein primary amine stretch or secondary R-carbon of amino acids | [70] |
867 | C–H out of plane bending | [66,69] |
626 | C–H bending vibration of RC=CH | [69,71] |
524 | S–S disulfide stretch in collagens and proteins | [72] |
Wave Number ACM (CM−1) | Wave Number Soya Milk Stabilized Emulsion (CM−1) | Band Assignments | References |
---|---|---|---|
301 | 3336 | Possible broad peak stretching vibrations of hydroxyl groups of hydrophilic amino acids | [32,64] |
2958 | 2963 | Possible mucus/glycoprotein CH2 out of plane vibration | [32,66,67] |
2924 | 2963 | Possible CH2 symmetric and out of plane vibration | [32] |
1634 | 1638 | Possible Amide stretch, β-sheets absorption bands; Amide I | [32,64] |
1414 | 1480 | Possible C-O of carbonyl COO group accepting zero or one H-bond | [29,32] |
1136 | 1183 | Anti-symmetric C-O-C glycoside bond; C-O strong bond stretch; | [32,68] |
ACM (g) | Soya Milk (mL) | Water (mL) | pH | D(3,2) (nm) | Stability (%) |
---|---|---|---|---|---|
1 | 50 | 49 | 7.85 | 179.2 ± 1.0 a | 41.4 ± 0.1 a |
3 | 50 | 47 | 7.92 | 176.1 ± 0.9 b | 43.8 ± 0.2 b |
5 | 50 | 45 | 7.95 | 172. 9 ± 0.6 c | 55.4 ± 0.2 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oluwole, A.J.O.; Ikhu-Omoregbe, D.I.; Jideani, V.A. Physicochemical Properties of African Catfish Mucus and Its Effect on the Stability of Soya Milk Emulsions. Appl. Sci. 2020, 10, 916. https://doi.org/10.3390/app10030916
Oluwole AJO, Ikhu-Omoregbe DI, Jideani VA. Physicochemical Properties of African Catfish Mucus and Its Effect on the Stability of Soya Milk Emulsions. Applied Sciences. 2020; 10(3):916. https://doi.org/10.3390/app10030916
Chicago/Turabian StyleOluwole, Adebanji Joseph Olasupo, Daniel Imwansi Ikhu-Omoregbe, and Victoria Adaora Jideani. 2020. "Physicochemical Properties of African Catfish Mucus and Its Effect on the Stability of Soya Milk Emulsions" Applied Sciences 10, no. 3: 916. https://doi.org/10.3390/app10030916
APA StyleOluwole, A. J. O., Ikhu-Omoregbe, D. I., & Jideani, V. A. (2020). Physicochemical Properties of African Catfish Mucus and Its Effect on the Stability of Soya Milk Emulsions. Applied Sciences, 10(3), 916. https://doi.org/10.3390/app10030916