Effects of Millet Bran Dietary Fiber and Millet Flour on Dough Development, Steamed Bread Quality, and Digestion In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Millet Flour
2.3. Preparation of Millet Bran DF
2.4. Dough Rheological Properties
2.5. Making Procedure of Steamed Bread
2.6. Color Evaluation of Steamed Bread
2.7. Textural Analysis of Steamed Bread
2.8. Sensory Evaluation of Steamed Bread
2.9. In Vitro Digestibility of Steamed Bread
2.9.1. Starch Digestibility
2.9.2. Protein Digestibility
2.10. Statistical Analysis
3. Results and Discussion
3.1. Rheological Characteristics
3.1.1. Effects of DF and Millet Flour on the Farinographical Properties of Mixed Dough
3.1.2. Effects of DF and Millet Flour on the Extensographical Properties of Mixed Dough
3.2. Color Evaluation of Steamed Bread
3.3. Textural Analysis of Steamed Bread
3.4. Sensory Evaluation of Steamed Bread
3.5. In Vitro Digestibility
3.5.1. Starch Digestibility
3.5.2. Protein Digestibility
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Franz, M.; Sampson, L. Challenges in developing a whole grain database: Definitions, methods and quantification. J. Food Compos. Anal. 2006, 19, S38–S44. [Google Scholar] [CrossRef]
- Reicks, M.; Jonnalagadda, S.; Albertson, A.M.; Joshi, N. Total dietary fiber intakes in the US population are related to whole grain consumption: Results from the National Health and Nutrition Examination Survey 2009 to 2010. Nutr. Res. 2014, 34, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Srivastava, S.; Tiwari, N. Comparative study on nutritional and sensory quality of barnyard and foxtail millet food products with traditional rice products. J. Food Sci. Tech. 2015, 52, 5147–5155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Tech. 2014, 51, 1021–1040. [Google Scholar] [CrossRef] [Green Version]
- Stojceska, V.; Butler, F.; Gallagher, E.; Keehan, D. A comparison of the ability of several small and large deformation rheological measurements of wheat dough to predict baking behaviour. J. Food Eng. 2007, 83, 475–482. [Google Scholar] [CrossRef]
- Vidya, S.; Ravi, R.; Bhattacharya, S. Effect of thermal treatment on selected cereals and millets flour doughs and their baking quality. Food Bioprocess. Tech. 2012, 6, 1218–1227. [Google Scholar] [CrossRef]
- Wang, P.; Tao, H.; Jin, Z.; Xu, X. Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality. Food Chem. 2016, 200, 117–124. [Google Scholar] [CrossRef]
- Fu, J.T.; Chang, Y.H.; Shiau, S.Y. Rheological, antioxidative and sensory properties of dough and Mantou (steamed bread) enriched with lemon fiber. LWT-Food Sci. Technol. 2015, 61, 56–62. [Google Scholar] [CrossRef]
- Shen, R.L.; LÜ, J.; Zhang, X.W.; Du, W.J.; Jiang, L.B.; Dong, J.L. Rheological properties of wheat dough added millet flour with different thermal treatments. J. Triticeae Crops 2016, 36, 1540–1546. [Google Scholar]
- Sun, R.; Zhang, Z.M.; Hu, X.J.; Xing, Q.H.; Zhuo, W.Y. Effect of wheat germ flour addition on wheat flour, dough and Chinese steamed bread properties. J. Cereal Sci. 2015, 64, 153–158. [Google Scholar] [CrossRef]
- Iglesias-Puig, E.; Monedero, V.; Haros, M. Bread with whole quinoa flour and bifidobacterial phytases increases dietary mineral intake and bioavailability. LWT-Food Sci. Technol. 2015, 60, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Liu, L.; Li, L.M.; Hao, C.M.; Zheng, X.L.; Bian, K.; Zhang, J.; Wang, X.X. Effects of different milling processes on whole wheat flour quality and performance in steamed bread making. LWT-Food Sci. Technol. 2015, 62, 310–318. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.D.; Li, Y.L.; Li, H.M.; Fan, H.H.; Wang, M. In Vitro digestibility and changes in physicochemical and textural properties of tartary buckwheat starch under high hydrostatic pressure. J. Food Eng. 2016, 189, 64–71. [Google Scholar] [CrossRef]
- Moraes, E.A.; Marineli, R.D.; Lenquiste, S.A.; Steel, C.J.; de Menezes, C.B.; Queiroz, V.A.; Marostica, M.R. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chem. 2015, 180, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, C.G.; Lorusso, A.; Montemurro, M.; Gobbetti, M. Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiol. 2016, 56, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka, A.; Miś, A.; Szymańska-Chargot, M. Characteristics of relationships between structure of gluten proteins and dough rheology–Influence of Dietary Fibres Studied by FT-Raman Spectroscopy. Food Biophys. 2015, 11, 81–90. [Google Scholar] [CrossRef]
- Rieder, A.; Holtekjølen, A.K.; Sahlstrøm, S.; Moldestad, A. Effect of barley and oat flour types and sourdoughs on dough rheology and bread quality of composite wheat bread. J. Cereal Sci. 2012, 55, 44–52. [Google Scholar] [CrossRef]
- Fendri, L.B.; Chaari, F.; Maaloul, M.; Kallel, F.; Abdelkafi, L.; Chaabouni, S.E.; Ghribi-Aydi, D. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT-Food Sci. Technol. 2016, 73, 584–591. [Google Scholar] [CrossRef]
- Huang, G.H.; Guo, Q.B.; Wang, C.; Ding, H.H.; Cui, S.W. Fenugreek fibre in bread: Effects on dough development and bread quality. LWT-Food Sci. Technol. 2016, 71, 274–280. [Google Scholar] [CrossRef]
- Verdú, S.; Barat, J.M.; Grau, R. Improving bread-making processing phases of fibre-rich formulas using chia (Salvia hispanica) seed flour. LWT-Food Sci. Technol. 2017, 84, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Linsberger-Martin, G.; Lukasch, B.; Berghofer, E. Effects of high hydrostatic pressure on the RS content of amaranth, quinoa and wheat starch. Starch-Stärke 2012, 64, 157–165. [Google Scholar] [CrossRef]
- Bae, I.Y.; Jun, Y.; Lee, S.; Lee, H.G. Characterization of apple dietary fibers influencing the in vitro starch digestibility of wheat flour gel. LWT-Food Sci. Technol. 2016, 65, 158–163. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Islas-Hernández, J.J.; Pacheco-Vargas, G.; Osorio-Díaz, P.; Bello-Pérez, L.A. Starch digestibility and glycemic index of cookies partially substituted with unripe banana flour. LWT-Food Sci. Technol. 2012, 46, 177–182. [Google Scholar] [CrossRef]
- Oh, I.K.; Bae, I.Y.; Lee, H.G. In vitro starch digestion and cake quality: Impact of the ratio of soluble and insoluble dietary fiber. Int. J. Biol. Macromol. 2014, 63, 98–103. [Google Scholar] [CrossRef]
- Wolever, T.M.; Jenkins, D.J.; Jenkins, A.L.; Josse, R.G. The glycemic index: Methodology and clinical implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [CrossRef]
- Ren, X.; Chen, J.; Wang, C.; Molla, M.M.; Diao, X.M.; Shen, Q. In Vitro starch digestibility, degree of gelatinization and estimated glycemic index of foxtail millet-derived products: Effect of freezing and frozen storage. J Cereal Sci. 2016, 69, 166–173. [Google Scholar] [CrossRef]
- Angioloni, A.; Collar, C. Effects of pressure treatment of hydrated oat, finger millet and sorghum flours on the quality and nutritional properties of composite wheat breads. J. Cereal Sci. 2012, 56, 713–719. [Google Scholar] [CrossRef]
- Wu, T.; Taylor, C.; Nebl, T.; Ng, K.; Bennett, L.E. Effects of chemical composition and baking on in vitro digestibility of proteins in breads made from selected gluten-containing and gluten-free flours. Food Chem. 2017, 233, 514–524. [Google Scholar] [CrossRef]
Sample | Steamed Millet Flour/% | DF/% | Wheat Flour/% | WA/% | DDT/min | DST/min | SD/FU | FQN |
---|---|---|---|---|---|---|---|---|
WF | 0 | 0 | 100 | 56.8 ± 0.3 a | 5.03 ± 0.30 a | 9.73 ± 0.12 a | 24 ± 2.52 d | 107 ± 7.51 a |
WF&MF | 25 | 0 | 75 | 52.0 ± 0.2 c | 4.77 ± 0.30 a | 7.53 ± 0.32 b | 45 ± 2.00 c | 85 ± 4.51 b |
2% DF | 25 | 2 | 73 | 52.3 ± 0.06 bc | 4.61 ± 0.38 a | 6.97 ± 0.32 bc | 53 ± 3.51 ab | 79 ± 0.58 b |
4% DF | 25 | 4 | 71 | 52.5 ± 0.06 b | 4.67 ± 0.17 a | 6.88 ± 0.11 c | 53 ± 0.58 ab | 80 ± 2.52 b |
6% DF | 25 | 6 | 69 | 52.3 ± 0.2 bc | 4.82 ± 0.44 a | 6.39 ± 0.34 cd | 57 ± 1.53 a | 79 ± 2.52 b |
8% DF | 25 | 8 | 67 | 52.1 ± 0.4 bc | 5.15 ± 0.13 a | 6.41 ± 0.22 cd | 51 ± 3.00 b | 83 ± 0.58 b |
10% DF | 25 | 10 | 65 | 51.9 ± 0.35 c | 4.62 ± 0.29 a | 5.87 ± 0.60 d | 51 ± 0.58 b | 83 ± 3.51 b |
Sample | 45 min | 90 min | 135 min | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A/cm² | E/mm | R/EU | Rm/EU | R/E | A/cm² | E/mm | R/EU | Rm/EU | R/E | A/cm² | E/mm | R/EU | Rm/EU | R/E | |
WF | 95 ± 2.52 a | 148 ± 0.58 a | 352 ± 8.50 c | 455 ± 15.5 a | 2.4 ± 0.05 e | 107 ± 4.00 a | 137 ± 11.5 a | 470 ± 15.5 b | 596 ± 23.5 a | 3.5 ± 0.18 c | 105 ± 7.51 a | 129 ± 3.51 a | 511 ± 16.5 b | 618 ± 29.5 a | 4.0 ± 0.02 d |
WF&MF | 55 ± 0.58 b | 98 ± 6.51 b | 397 ± 5.51 a | 402 ± 11.0 b | 4.1 ± 0.32 bc | 60 ± 2.52 b | 85 ± 5.51 b | 534 ± 17.5 a | 534 ± 12.5 b | 6.3 ± 0.20 a | 57 ± 5.51 b | 85 ± 5.57 b | 544 ± 11.5 a | 547 ± 6.51 b | 6.4 ± 0.35 b |
2% DF | 45 ± 3.51 c | 87 ± 3.00 c | 370 ± 12.5 b | 371 ± 9.5 c | 4.3 ± 0.01 b | 48 ± 0.58 c | 76 ± 5.51 bc | 470 ± 6.51 b | 476 ± 11.5 c | 6.1 ± 0.36 a | 49 ± 4.51 c | 74 ± 2.52 c | 494 ± 12.5 c | 529 ± 16.5 b | 6.6 ± 0.06 b |
4% DF | 41 ± 1.53 d | 70 ± 5.51 d | 364 ± 6.5 bc | 374 ± 14.0 c | 5.2 ± 0.50 a | 47 ± 3.51 c | 68 ± 3.00 cd | 452 ± 9.50 b | 465 ± 15.5 c | 6.7 ± 0.15 a | 43 ± 0.58 cd | 64 ± 0.58 d | 468 ± 7.51 d | 528 ± 17.5 b | 7.3 ± 0.07 a |
6% DF | 38 ± 0.58 d | 68 ± 1.53 d | 334 ± 12.0 d | 348 ± 13.5 d | 4.9 ± 0.07 a | 36 ± 0.58 d | 62 ± 6.51 d | 398 ± 10.5 c | 466 ± 5.51 c | 6.4 ± 0.50 a | 37 ± 2.52 d | 62 ± 4.51 d | 386 ± 7.51 e | 467 ± 9.50 c | 6.2 ± 0.57 b |
8% DF | 22 ± 0.58 e | 65 ± 1.53 de | 224 ± 8.0 e | 268 ± 7.51 e | 3.5 ± 0.05 d | 22 ± 2.52 e | 63 ± 3.51 d | 230 ± 6.51 d | 275 ± 6.51 d | 3.7 ± 0.31 c | 19 ± 2.52 e | 51 ± 4.51 e | 243 ± 0.58 f | 298 ± 2.52 d | 4.8 ± 0.44 c |
10% DF | 22 ± 1.53 e | 60 ± 4.00 e | 216 ± 6.51 e | 245 ± 8.50 f | 3.6 ± 0.35 cd | 19 ± 2.52 e | 57 ± 2.00 d | 244 ± 7.51 d | 262 ± 3.51 d | 4.3 ± 0.02 b | 15 ± 0.58 e | 48 ± 3.00 e | 230 ± 4.51 f | 241 ± 6.00 e | 4.8 ± 0.21 c |
Sample | L* | A* | B* | ΔE* | Hue Angle (ho) | Chroma (C) |
---|---|---|---|---|---|---|
WF | 92.32 ± 0.35 ab | 7.44 ± 0.05 a | 5.90 ± 0.11 g | 0 g | 0.98 ± 0.12 a | 9.50 ± 0.10 a |
WF&MF | 92.47 ± 0.22 b | 7.22 ± 0.10 b | 6.17 ± 0.02 f | 0.38 ± 0.03 f | 0.87 ± 0.02 a | 9.50 ± 0.13 a |
2%DF | 92.24 ± 0.18 ab | 7.00 ± 0.06 cd | 6.53 ± 0.08 e | 0.77 ± 0.06 e | 0.74 ± 0.05 b | 9.57 ± 0.07 a |
4%DF | 92.14 ± 0.09 abc | 7.04 ± 0.03 c | 7.10 ± 0.04 d | 1.28 ± 0.10 d | 0.63 ± 0.03 bc | 10.00 ± 0.11 b |
6%DF | 91.96 ± 0.15 bcd | 6.89 ± 0.10 d | 7.34 ± 0.06 c | 1.58 ± 0.10 c | 0.55 ± 0.08 cd | 10.06 ± 0.06 b |
8%DF | 91.79 ± 0.10 cd | 6.88 ± 0.05 d | 7.58 ± 0.05 b | 1.85 ± 0.08 b | 0.51 ± 0.05 d | 10.24 ± 0.08 c |
10%DF | 91.76 ± 0.13 d | 6.91 ± 0.07 d | 7.73 ± 0.03 a | 1.99 ± 0.05 a | 0.48 ± 0.04 d | 10.37 ± 0.04 c |
Sample | Hardness/g | Springiness | Cohesiveness/g·s | Gumminess/g | Chewiness/g | Resilience |
---|---|---|---|---|---|---|
WF | 1786.21 ± 98.52 g | 0.938 ± 0.001 a | 0.785 ± 0.006 a | 1402.46 ± 85.48 g | 1315.24 ± 83.35 g | 0.436 ± 0.004 a |
WF&MF | 2764.29 ± 212.60 f | 0.916 ± 0.019 b | 0.763 ± 0.029 a | 2110.23 ± 242.18 f | 1932.98 ± 207.86 f | 0.425 ± 0.028 ab |
2% DF | 3387.55 ± 273.48 e | 0.907 ± 0.027 b | 0.704 ± 0.021 b | 2385.24 ± 106.44 e | 2164.05 ± 78.38 e | 0.409 ± 0.009 b |
4% DF | 3854.44 ± 345.85 d | 0.860 ± 0.037 c | 0.668 ± 0.059 bc | 2574.82 ± 203.16 d | 2215.30 ± 146.05 d | 0.387 ± 0.043 c |
6% DF | 4309.36 ± 180.88 c | 0.831 ± 0.046 d | 0.637 ± 0.004 cd | 2746.23 ± 131.15 c | 2282.15 ± 212.36 c | 0.368 ± 0.014 cd |
8% DF | 4953.23 ± 163.19 b | 0.787 ± 0.049 e | 0.612 ± 0.037 d | 3034.46 ± 193.22 b | 2389.69 ± 141.59 b | 0.357 ± 0.025 de |
10% DF | 5350.87 ± 118.87 a | 0.779 ± 0.002 e | 0.599 ± 0.032 d | 3206.07 ± 166.35 a | 2497.83 ± 113.22 a | 0.343 ± 0.025 e |
Sample | Appearance Shape | Porosity | Elasticity | Mouth Satisfaction | Flavor | Color | Specific Volume | Total Points |
---|---|---|---|---|---|---|---|---|
WF | 13 | 12 | 18 | 9 | 14 | 14 | 10 | 90 |
WF&MF | 13 | 13 | 17 | 8 | 14 | 13 | 8 | 85 |
2% DF | 12 | 12 | 16 | 8 | 13 | 12 | 7 | 80 |
4% DF | 12 | 11 | 15 | 8 | 11 | 10 | 6 | 73 |
6% DF | 11 | 10 | 13 | 8 | 11 | 8 | 5 | 66 |
8% DF | 11 | 11 | 10 | 7 | 9 | 7 | 4 | 59 |
10% DF | 10 | 9 | 9 | 6 | 8 | 6 | 3 | 51 |
Sample | RDS | SDS | RS |
---|---|---|---|
WF | 49.80 ± 2.01 a | 22.59 ± 0.57 a | 0.44 ± 0.08 c |
WF&MF | 44.94 ± 1.39 b | 18.04 ± 1.03 b | 0.49 ± 0.05 c |
2% DF | 44.21 ± 1.77 bc | 17.91 ± 1.22 b | 0.53 ± 0.10 bc |
4% DF | 43.73 ± 0.65 bc | 16.56 ± 0.86 bc | 0.60 ± 0.07 bc |
6% DF | 43.24 ± 2.43 bc | 15.33 ± 0.94 c | 0.58 ± 0.08 bc |
8% DF | 42.39 ± 1.52 cd | 15.57 ± 1.44 c | 0.70 ± 0.04 b |
10% DF | 41.07 ± 1.14 d | 14.45 ± 0.78 c | 0.89 ± 0.05 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lv, J.; Wang, L.; Zhu, Y.; Shen, R. Effects of Millet Bran Dietary Fiber and Millet Flour on Dough Development, Steamed Bread Quality, and Digestion In Vitro. Appl. Sci. 2020, 10, 912. https://doi.org/10.3390/app10030912
Li Y, Lv J, Wang L, Zhu Y, Shen R. Effects of Millet Bran Dietary Fiber and Millet Flour on Dough Development, Steamed Bread Quality, and Digestion In Vitro. Applied Sciences. 2020; 10(3):912. https://doi.org/10.3390/app10030912
Chicago/Turabian StyleLi, Yunlong, Jing Lv, Lei Wang, Yingying Zhu, and Ruiling Shen. 2020. "Effects of Millet Bran Dietary Fiber and Millet Flour on Dough Development, Steamed Bread Quality, and Digestion In Vitro" Applied Sciences 10, no. 3: 912. https://doi.org/10.3390/app10030912
APA StyleLi, Y., Lv, J., Wang, L., Zhu, Y., & Shen, R. (2020). Effects of Millet Bran Dietary Fiber and Millet Flour on Dough Development, Steamed Bread Quality, and Digestion In Vitro. Applied Sciences, 10(3), 912. https://doi.org/10.3390/app10030912