Experimental Implications of Negative Quantum Conditional Entropy—H2 Mobility in Nanoporous Materials
Abstract
:1. Introduction: “Information is Physical”
2. The Elitzur-Vaidman Effect, Google’s Quantum Processor, and the Physical Meaning of the Quantum State Vector
3. INS Measurement—Outline of Some Results
3.1. Conventional Theory: Momentum and Energy Conservation in Two-Body Collisions
3.2. Experimental Determination of Scatterer’s Mass
3.3. INS from Bulk Ice-Ih—Conventional Theory
4. The New Scattering Effect
4.1. Example: INS from Single H Molecules in C-Nanotubes
4.2. Second Example—INS from Single H Molecules in the Metal-Organic Framework Material “HKUST-1”
4.3. Comparison of the Two Experiments
5. Quantum Heating and Quantum Cooling Due to Quantum Environment—Kurizki’s Model
6. Thermodynamic Meaning of Negative Conditional Entropy, Generalized Landauer’s Principle, and Interpretation of the INS Effect
6.1. Interpretation of the E-Excess INS Effect
7. Quantum Correlations in Scattering Dynamics
8. Excess E-Transfer in Neutron-H Collision—Number of “Consumed” Qubits
9. Additional Remarks and Discussion
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
a.m.u. | Atomic Mass Unit |
FSE | Final-State Effects |
IFM | Interaction Free Measurement |
IA | Impulse Approximation |
IINS | Inelastic Incoherent Neutron Scattering |
INS | Equivalent to IINS |
IT | Information theory |
meV | Milli-Electron Volt |
MZI | Mach–Zehnder Interferometer |
NP | nondeterministic polynomial |
QE | Quantum Entanglement |
QTD | Quantum Thermodynamics |
QIT | Quantum Information Theory |
QoC | Quantumness of Correlations |
QND | Quantum Non-Demolition |
TOF | Time-of-Flight |
TSVF | Two-State Vector Formalism |
WV | Weak Value |
Appendix A. Experimental Context—Incoherent Neutron Scattering
Appendix A.1. Incoherent Inelastic Neutron Scattering from Protons
Appendix A.2. Details of Scattering Spectrometer, Calibration and “What Is Measured”
References
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef][Green Version]
- Vedral, V. Quantum entanglement. Nat. Phys. 2014, 10, 256–258. [Google Scholar] [CrossRef]
- Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A Math. Gen. 2001, 34, 6899–6905. [Google Scholar] [CrossRef]
- Ollivier, H.; Zurek, W.H. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 2002, 88, 017901. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Landauer, R. Information is Physical. Phys. Today 1991, 44, 23. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics, Volume III, Quantum Mechanics; Addison-Wesley: Reading, MA, USA, 1965. [Google Scholar]
- Squires, G.L. Introduction to the Theory, of Thermal Neutron Scattering, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- van Hove, L. Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 1954, 95, 249–262. [Google Scholar] [CrossRef][Green Version]
- Watson, G.I. Neutron Compton scattering. J. Phys. Condens. Matter 1996, 8, 5955–5975. [Google Scholar] [CrossRef][Green Version]
- Mitchell, P.C.H.; Parker, S.F.; Ramirez-Cuesta, A.J.; Tomkinson, J. Vibrational Spectroscopy with Neutrons; World Scientific: Singapore, 2005. [Google Scholar]
- Cerf, N.J.; Adami, C. Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 1997, 79, 5194–5197. [Google Scholar] [CrossRef][Green Version]
- del Rio, L.; Åberg, J.; Renner, R.; Dahlsten, O.; Vedral, V. The thermodynamic meaning of negative entropy. Nature 2011, 474, 61–63, (See also Addendum at doi:10.1038/nature10395). [Google Scholar]
- Modi, K.; Brodutch, A.; Cable, H.; Paterek, T.; Vedral, V. The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 2012, 84, 1655–1707. [Google Scholar] [CrossRef][Green Version]
- Available online: https://neutrons.ornl.gov/ARCS (accessed on 19 October 2020).
- Available online: https://www.isis.stfc.ac.uk/Pages/mari.aspx (accessed on 19 October 2020).
- Chatzidimitriou-Dreismann, C.A. Quantumness of correlations and Maxwell’s demon in molecular excitations created by neutron scattering. Int. J Quantum Chem. 2015, 115, 909–929. [Google Scholar] [CrossRef]
- Chatzidimitriou-Dreismann, C.A. Quantum Confinement Effects of Hydrogen in Nanocavities–Experimental INS Results and New Insights. Recent Prog. Mater. 2020, 2, 53. [Google Scholar] [CrossRef]
- Leifer, M.S. Is the Quantum State Real? An Extended Review of ψ-ontology Theorems. Quanta 2014, 3, 67–155. [Google Scholar] [CrossRef]
- Elitzur, A.C.; Vaidman, L. Quantum mechanical interaction-free measurements. Found. Phys. 1993, 23, 987–997. [Google Scholar] [CrossRef][Green Version]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef][Green Version]
- Wang, H.; Qin, J.; Ding, X.; Chen, M.C.; Chen, S.; You, X.; He, Y.M.; Jiang, X.; You, L.; Wang, Z.; et al. Boson sampling with 20 input photons and a 60-Mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 2019, 123, 250503. [Google Scholar] [CrossRef][Green Version]
- Arora, S.; Barak, B. Computational Complexity—A Modern Approach; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Fortnow, L. The status of the P versus NP problem. Commun. ACM 2009, 52, 78–86. [Google Scholar] [CrossRef][Green Version]
- Diallo, S.O.; Azuah, R.T.T.; Abernathy, D.L.; Rota, R.; Boronat, J.; Glyde, H.R. Bose–Einstein condensation in liquid 4He near the liquid-solid transition line. Phys. Rev. B 2012, 85, 140505. [Google Scholar] [CrossRef][Green Version]
- Chatzidimitriou-Dreismann, C.A. Weak measurement and Two-State-Vector formalism: Deficit of momentum transfer in scattering processes. Quanta 2016, 5, 61–84. [Google Scholar] [CrossRef][Green Version]
- Kearley, G.J.; Fillaux, F.; Baron, M.H.; Bennington, S.; Tomkinson, J. A new look at proton transfer dynamics along the hydrogen bonds in amides and peptides. Science 1994, 264, 1285–1289. [Google Scholar] [CrossRef]
- Olsen, R.J.; Beckner, M.; Stone, M.B.; Pfeifer, P.; Wexler, C.; Taub, H. Quantum excitation spectrum of hydrogen adsorbed in nanoporous carbons observed by inelastic neutron scattering. Carbon 2013, 58, 46–58. [Google Scholar] [CrossRef]
- Callear, S.K.; Ramirez-Cuesta, A.J.; David, W.I.F.; Millange, F.; Walton, R.I. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1. Chem. Phys. 2013, 427, 9–17. [Google Scholar] [CrossRef]
- Erez, N.; Gordon, G.; Nest, M.; Kurizki, G. Thermodynamic constrol of frequent quantum measurements. Nature 2008, 452, 724–727. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gordon, G.; Bensky, G.; Gelbwaser-Klimovsky, D.; Bhaktavatsala Rao, D.D.; Erez, N.; Kurizki, G. Cooling down quantum bits on ultrashort time scales. New J. Phys. 2009, 11, 123025. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois: Urbana, IL, USA, 1949. [Google Scholar]
- Landauer, R. Dissipation and heat generation in the computing process. IBM J. Res. Develop. 1961, 5, 148–156. [Google Scholar] [CrossRef]
- Bennett, C.H. The thermodynamics of computation—A review. Int. J. Theor. Phys. 1982, 21, 905–940. [Google Scholar] [CrossRef]
- Bennett, C.H. Notes on Landauer’s principle, reversible computation and Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 2003, 34, 501–510. [Google Scholar] [CrossRef][Green Version]
- Chatzidimitriou-Dreismann, C.A.; Gray, E.M.; Blach, T.P. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer Vesuvio at ISIS. Nucl. Instr. Meth. A 2012, 676, 120–125. [Google Scholar] [CrossRef]
- Chatzidimitriou-Dreismann, C.A.; Gray, E.M.; Blach, T.P. Indications of energetic consequences of decoherence at short times for scattering from open quantum systems. AIP Adv. 2011, 1, 022118. [Google Scholar] [CrossRef][Green Version]
- Chatzidimitriou-Dreismann, C.A. Weak values and two-state-vector formalism in elementary scattering and reflectivity—A new effect. Universe 2019, 5, 58. [Google Scholar] [CrossRef][Green Version]
- Aharonov, Y.; Rohrlich, D. Quantum Paradoxes: Quantum Theory for the Perplexed; WILEY-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Dressel, J.; Malik, M.; Miatto, F.M.; Jordan, A.N.; Boyd, R.W. Colloquium: Understanding quantum weak values: Basics and applications. Rev. Mod. Phys. 2014, 86, 307–316. [Google Scholar] [CrossRef][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzidimitriou-Dreismann, C.A. Experimental Implications of Negative Quantum Conditional Entropy—H2 Mobility in Nanoporous Materials. Appl. Sci. 2020, 10, 8266. https://doi.org/10.3390/app10228266
Chatzidimitriou-Dreismann CA. Experimental Implications of Negative Quantum Conditional Entropy—H2 Mobility in Nanoporous Materials. Applied Sciences. 2020; 10(22):8266. https://doi.org/10.3390/app10228266
Chicago/Turabian StyleChatzidimitriou-Dreismann, C. Aris. 2020. "Experimental Implications of Negative Quantum Conditional Entropy—H2 Mobility in Nanoporous Materials" Applied Sciences 10, no. 22: 8266. https://doi.org/10.3390/app10228266