Wingate Test, When Time and Overdue Fatigue Matter: Validity and Sensitivity of Two Time-Shortened Versions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Procedures
2.3.1. Wingate Anaerobic Test (WAnT)
2.3.2. Variables Analyzed
- -
- Mean Power Output (MPO): Average power output achieved throughout the trial duration.
- -
- Fatigue Index (FI): Percentage of power decline during the trial duration calculated as (PPO-MinPO)/PPO, where PPO and MinPO represent the peak (i.e., maximal) and minimal power outputs achieved in the test, respectively.
2.3.3. Resistance Training Program
2.4. Statistical Analysis
- -
- Standard error of measurement (SEM) calculated from the square root of the mean square error term in repeated-measurements ANOVA [28]. Results were presented both in absolute (W) and relative terms as a coefficient of variation (CV = 100 SEM/mean).
- -
- Smallest detectable change (SDC) derived from the SEM (√2 × SEM × 1.96) as an indicator of sensitivity [29].
- -
- Bland–Altman plots and the calculation of systematic bias and its 95% limits of agreement (LoA = bias ± 1.96 SD) were also used to analyze the level of agreement between paired (estimated vs. criterion) MPO measurements [30].
3. Results
3.1. Regression Models (Phase A)
3.2. Cross-Validation Analysis (Phase B)
3.3. Sensitivity to Detect Power Changes (Phase C)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bar-Or, O.; Dotan, R.; Inbar, O.; Rothstein, A.; Karlsson, J.; Tesch, P. Anaerobic Capacity and Muscle Fiber Type Distribution in Man. Endoscopy 1980, 1, 82–85. [Google Scholar] [CrossRef]
- Bar-Or, O. The Wingate Anaerobic Test. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Jacobs, P.L.; Mahoney, E.T.; Johnson, B. Reliability of arm Wingate Anaerobic Testing in persons with complete paraplegia. J. Spinal Cord Med. 2003, 26, 141–144. [Google Scholar] [CrossRef]
- Maud, P.J.; Shultz, B.B. Norms for the Wingate Anaerobic Test with Comparison to Another Similar Test. Res. Q. Exerc. Sport 1989, 60, 144–151. [Google Scholar] [CrossRef]
- Morán-Navarro, R.; Pérez, C.E.; Mora-Rodriguez, R.; De La Cruz-Sánchez, E.; González-Badillo, J.J.; Sánchez-Medina, L.; Pallarés, J.G. Time course of recovery following resistance training leading or not to failure. Graefe Arch. Clin. Exp. Ophthalmol. 2017, 117, 2387–2399. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.; Hachana, Y.; Chaabene, H.; Gaddour, A.; Neji, Z.; Shephard, R.J.; Chelly, M.S. Reliability and Validity of a 20-s Alternative to the Wingate Anaerobic Test in Team Sport Male Athletes. PLoS ONE 2014, 9, e114444. [Google Scholar] [CrossRef] [PubMed]
- Dallmeijer, A.J.; Scholtes, V.A.; Brehm, M.-A.; Becher, J.G. Test-Retest Reliability of the 20-sec Wingate Test to Assess Anaerobic Power in Children with Cerebral Palsy. Am. J. Phys. Med. Rehabil. 2013, 92, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Hachana, Y.; Attia, A.; Chaabène, H.; Gallas, S.; Sassi, R.H.; Dotan, R. Test-retest reliability and circadian performance variability of a 15-s Wingate Anaerobic Test. Biol. Rhythm. Res. 2012, 43, 413–421. [Google Scholar] [CrossRef]
- Hachana, Y.; Attia, A.; Nassib, S.; Shephard, R.J.; Chelly, M.S. Test-Retest Reliability, Criterion-Related Validity, and Minimal Detectable Change of Score on an Abbreviated Wingate Test for Field Sport Participants. J. Strength Cond. Res. 2012, 26, 1324–1330. [Google Scholar] [CrossRef]
- Kavaliauskas, M.; Phillips, S.M. Reliability and sensitivity of the 6 and 30 second Wingate tests in physically active males and females. Isokinet. Exerc. Sci. 2016, 24, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Laurent, C.M.; Meyers, M.C.; Robinson, C.A.; Green, J.M. Cross-validation of the 20- versus 30-s Wingate anaerobic test. Graefe Arch. Clin. Exp. Ophthalmol. 2007, 100, 645–651. [Google Scholar] [CrossRef]
- Zajac, A.; Jarzabek, R.; Waskiewicz, Z. The diagnostic value of the 10− and 30-second Wingate test for competitive athletes. J. Strength Cond. Res. 1999, 13, 16–19. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Cava, A.M.; Courel-Ibáñez, J.; González-Badillo, J.J.; Morán-Navarro, R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport Sci. 2019, 20, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Lillo-Bevia, J.R.; Morán-Navarro, R.; Cerezuela-Espejo, V.; Mora-Rodriguez, R. Time to exhaustion during cycling is not well predicted by critical power calculations. Appl. Physiol. Nutr. Metab. 2020, 45, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Morán-Navarro, R. Methodological approach to the cardiorespiratory endurance training. J. Sport Heal. Res. 2012, 4, 119–136. [Google Scholar]
- Stickley, C.D.; Hetzler, R.K.; Kimura, I.F. Prediction of Anaerobic Power Values from an Abbreviated WAnT Protocol. J. Strength Cond. Res. 2008, 22, 958–965. [Google Scholar] [CrossRef]
- Lakomy, H.K.A. Measurement of work and power output using friction-loaded cycle ergometers. Ergonomics 1986, 29, 509–517. [Google Scholar] [CrossRef]
- Reiser, R.F.; Broker, J.P.; Peterson, M.L. Inertial effects on mechanically braked Wingate power calculations. Med. Sci. Sports Exerc. 2000, 32, 1660–1664. [Google Scholar] [CrossRef]
- MacIntosh, B.R.; Bryan, S.N.; Rishaug, P.; Norris, S.R. Evaluation of the Monark Wingate Ergometer by Direct Measurement of Resistance and Velocity. Can. J. Appl. Physiol. 2001, 26, 543–558. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Lillo-Bevia, J.R. Validity and Reliability of the PowerTap P1 Pedals Power Meter. J. Sports Sci. Med. 2018, 17, 305–311. [Google Scholar]
- Lillo-Bevia, J.R.; Pallarés, J.G. Validity and Reliability of the Cycleops Hammer Cycle Ergometer. Int. J. Sports Physiol. Perform. 2018, 13, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Rudsits, B.L.; Hopkins, W.G.; Hautier, C.A.; Rouffet, D. Force-velocity test on a stationary cycle ergometer: Methodological recommendations. J. Appl. Physiol. 2018, 124, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 2018, 37, 1088–1096. [Google Scholar] [CrossRef]
- Morán-Navarro, R.; Martínez-Cava, A.; Sánchez-Medina, L.; Mora-Rodriguez, R.; González-Badillo, J.J.; Pallarés, J.G. Movement Velocity as a Measure of Level of Effort During Resistance Exercise. J. Strength Cond. Res. 2019, 33, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Morán-Navarro, R.; González-Badillo, J.J.; Pallarés, J.G. Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS ONE 2020, 15, e0232465. [Google Scholar]
- Courel-Ibáñez, J.; Martínez-Cava, A.; Morán-Navarro, R.; Escribano-Peñas, P.; Chavarren-Cabrero, J.; González-Badillo, J.J.; Pallarés, J.G. Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. Ann. Biomed. Eng. 2019, 47, 1523–1538. [Google Scholar] [CrossRef]
- Hair, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis: A Global Perspective.; Pearson Education: London, UK, 2010. [Google Scholar]
- Atkinson, G.; Nevill, A.M. Statistical Methods for Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Beckerman, H.; Roebroeck, M.; Lankhorst, G.; Becher, J.; Bezemer, P.; Verbeek, A. Smallest real difference, a link between reproducibility and responsiveness. Qual. Life Res. 2001, 10, 571–578. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Machin, D.; Campbell, M.J.; Tan, S.B.; Tan, S.H. Sample Size Tables for Clinical Studies; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Lu, M.-J.; Zhong, W.-H.; Liu, Y.-X.; Miao, H.; Li, Y.-C.; Ji, M.-H. Sample Size for Assessing Agreement between Two Methods of Measurement by Bland−Altman Method. Int. J. Biostat. 2016, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Siahkouhian, M.; Khodadadi, D.; Shahmoradi, K. Effects of high-intensity interval training on aerobic and anaerobic indices: Comparison of physically active and inactive men. Sci. Sports 2013, 28, e119–e125. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Hansen, E.A.; Raastad, T. Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 108, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Rønnestad, B.R.; Hansen, J.; Nygaard, H. 10 weeks of heavy strength training improves performance-related measurements in elite cyclists. J. Sports Sci. 2016, 35, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.P.; Ganini, D.; De Lorenço-Lima, L.; Soares, C.O.; Pereira, B.; Bechara, E.J.H.; Silveira, L.R.; Curi, R.; Souza-Junior, T.P. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test. J. Int. Soc. Sports Nutr. 2012, 9, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, R.; García-Fernández, P.; Cuenca, E.; Muñoz-González, A.; Muñoz-González, A.; De Jesús, F.; Veiga-Herreros, P.; Da Silva, S.F.; Maté-Muñoz, J.L.; Maté-Muñoz, J.L. Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test. Nutrients 2017, 9, 1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, N.; Campbell, B.; Franek, M.; Buchanan, L.; Colquhoun, R. The effect of acute pre-workout supplementation on power and strength performance. J. Int. Soc. Sports Nutr. 2016, 13, 29. [Google Scholar] [CrossRef] [Green Version]
- Durkalec-Michalski, K.; Zawieja, E.E.; Zawieja, B.E.; Michałowska, P.; Podgórski, T. The gender dependent influence of sodium bicarbonate supplementation on anaerobic power and specific performance in female and male wrestlers. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Adrian, J.; Kamińska, J.; Podgórski, T. The influence of progressive-chronic and acute sodium bicarbonate supplementation on anaerobic power and specific performance in team sports: A randomized, double-blind, placebo-controlled crossover study. Nutr. Metab. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Zawieja, E.E.; Podgórski, T.; Zawieja, B.; Michałowska, P.; Łoniewski, I.; Jeszka, J. The Effect of a New Sodium Bicarbonate Loading Regimen on Anaerobic Capacity and Wrestling Performance. Nutrients 2018, 10, 697. [Google Scholar] [CrossRef] [Green Version]
- Souissi, N.; Bessot, N.; Chamari, K.; Gauthier, A.; Sesboüé, B.; Davenne, D. Effect of Time of Day on Aerobic Contribution to the 30-s Wingate Test Performance. Chrono. Int. 2007, 24, 739–748. [Google Scholar] [CrossRef]
- Yildiz, M.; Bozdemir, M.; Akyıldız, Z. Acute effects of pre-exercise foam rolling in addition to dynamic stretching on anaerobic power. J. Phys. Educ. Sport. 2011, 12, 73–80. [Google Scholar]
- Doma, K.; Leicht, A.S.; Schumann, M.; Nagata, A.; Senzaki, K.; Woods, C.E. Postactivation potentiation effect of overloaded cycling on subsequent cycling Wingate performance. J. Sports Med. Phys. Fit. 2019, 59, 217–222. [Google Scholar] [CrossRef]
- Marquardt, J.A.; Bacharach, D.W.; Kotly, J.M. 608 PREDICTING 30 SECOND MINIMUM POWER FROM A 20 SECOND WINGATE TEST. Med. Sci. Sports Exerc. 1993, 25, S108. [Google Scholar] [CrossRef]
Model | Variable | B | B 95% CI | ß | t | p |
---|---|---|---|---|---|---|
WAnT15 | ||||||
Y-Intercept | 114.33 (18.74) | 76.36 to 152.29 | 6.10 | <0.001 | ||
MPO | 0.81 (0.019) | 0.77 to 0.85 | 0.94 | 42.27 | <0.001 | |
FI | −205.70 (23.94) | −254.21 to −157.20 | −0.19 | −8.59 | <0.001 | |
WAnT20 | ||||||
Y-Intercept | 70.43 (15.52) | 38.99 to 101.88 | 4.54 | <0.001 | ||
MPO | 0.88 (0.02) | 0.85 to 0.91 | 0.97 | 58.71 | <0.001 | |
FI | −115.10 (19.16) | −153.91 to −76.29 | −0.10 | −6.01 | <0.001 |
WAnT15 | WAnT20 | |
---|---|---|
Agreement | ||
r | 0.99 | 0.99 |
ICC | 0.99 | 0.99 |
CI-95% lower | 0.98 | 0.99 |
CI-95% upper | 1.00 | 1.00 |
t-test (p-value) | 0.56 | 0.96 |
Magnitude of error | ||
SEM (W) | 8.0 | 3.3 |
SDC (W) | 22.2 | 9.3 |
CV (%) | 1.2 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Belmonte, A.; Buendía-Romero, Á.; Martínez-Cava, A.; Courel-Ibáñez, J.; Mora-Rodríguez, R.; Pallarés, J.G. Wingate Test, When Time and Overdue Fatigue Matter: Validity and Sensitivity of Two Time-Shortened Versions. Appl. Sci. 2020, 10, 8002. https://doi.org/10.3390/app10228002
Hernández-Belmonte A, Buendía-Romero Á, Martínez-Cava A, Courel-Ibáñez J, Mora-Rodríguez R, Pallarés JG. Wingate Test, When Time and Overdue Fatigue Matter: Validity and Sensitivity of Two Time-Shortened Versions. Applied Sciences. 2020; 10(22):8002. https://doi.org/10.3390/app10228002
Chicago/Turabian StyleHernández-Belmonte, Alejandro, Ángel Buendía-Romero, Alejandro Martínez-Cava, Javier Courel-Ibáñez, Ricardo Mora-Rodríguez, and Jesús G. Pallarés. 2020. "Wingate Test, When Time and Overdue Fatigue Matter: Validity and Sensitivity of Two Time-Shortened Versions" Applied Sciences 10, no. 22: 8002. https://doi.org/10.3390/app10228002
APA StyleHernández-Belmonte, A., Buendía-Romero, Á., Martínez-Cava, A., Courel-Ibáñez, J., Mora-Rodríguez, R., & Pallarés, J. G. (2020). Wingate Test, When Time and Overdue Fatigue Matter: Validity and Sensitivity of Two Time-Shortened Versions. Applied Sciences, 10(22), 8002. https://doi.org/10.3390/app10228002