Nanoparticle Deposition of Fluoropolymer CYTOP via Holographic Femtosecond Laser Processing and Its Biochip Application
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Fundamental Characteristics of CYTOP NP Deposition
3.1.1. Influence of the CYTOP–Glass Slide Distance on the NP Deposition
3.1.2. Influence of Laser Processing Parameters on the NP Deposition
3.2. Wettability of the Deposited CYTOP NPs
3.3. Selective Cell Culturing on the NP-Deposited Glass
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ni, M.; Tong, W.H.; Choudhury, D.; Rahim, N.A.A.; Iliescu, C.; Yu, H. Cell Culture on MEMS Platforms. Int. J. Mol. Sci. 2009, 10, 5411–5441. [Google Scholar]
- Bhushan, B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron. Eng. 2007, 84, 387–412. [Google Scholar]
- Pang, W.; Zhao, H.; Kim, E.S.; Zhang, H.; Yu, H.; Hu, X. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. Lab. Chip. 2012, 12, 29–44. [Google Scholar] [CrossRef]
- Cai, H.; Parks, J.W.; Wall, T.A.; Stott, M.A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R.A.; Carrion, R.; Patterson, J.L.; et al. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Sci. Rep. 2015, 5, 14494. [Google Scholar] [CrossRef] [PubMed]
- CYTOPTM Technical Information. Available online: https://www.agcce.com/cytop-technical-information/ (accessed on 23 July 2020).
- Hanada, Y.; Ogawa, T.; Koike, K.; Sugioka, K. Making the invisible visible: A microfluidic chip using a low refractive index polymer. Lab. Chip. 2016, 16, 2481–2486. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Hanada, Y. Microfabrication of the UV transparent polymer CYTOP using a conventional pulsed green laser. Appl. Phys. A 2016, 122, 156–161. [Google Scholar] [CrossRef]
- Nemoto, K.; Hanada, Y. Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications. Micromachines 2018, 9, 662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tull, B.R.; Carey, J.E.; Sheehy, M.A.; Friend, C.; Mazur, E. Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas. Appl. Phys. A 2006, 83, 341–346. [Google Scholar] [CrossRef]
- Venkatakrishnan, K.; Vipparty, D.; Tan, B. Nanofibre fabrication by femtosecond laser ablation of silica glass. Opt. Express 2011, 19, 15770–15776. [Google Scholar] [CrossRef]
- Hao, J.; Pan, L.; Gao, S.; Fan, H.; Gao, B. Production of fluorescent nano-diamonds through femtosecond pulsed laser ablation. Opt. Mater. Express 2019, 9, 4734–4741. [Google Scholar] [CrossRef]
- Kaakkunen, J.J.J.; Laakso, P.; Kujanpää, V. Adaptive multibeam laser cutting of thin steel sheets with fiber laser using spatial light modulator. J. Laser Appl. 2014, 26, 032008. [Google Scholar] [CrossRef]
- Kaakkunen, J.J.J.; Vanttaja, I.; Laakso, P. Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser. J. Laser Micro/Nanoeng. 2014, 9, 37–41. [Google Scholar] [CrossRef]
- Kuang, Z.; Li, J.; Edwardson, S.; Perrie, W.; Liu, D.; Dearden, G. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator. Opt. Lasers Eng. 2015, 70, 1–5. [Google Scholar] [CrossRef]
- Hayasaki, Y.; Nishitani, M.; Takahashi, H.; Yamamoto, H.; Takita, A.; Suzuki, D.; Hasegawa, S. Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing. Appl. Phys. A 2012, 107, 357–362. [Google Scholar] [CrossRef]
- Hasegawa, S.; Shiono, K.; Hayasaki, Y. Femtosecond laser processing with a holographic line-shaped beam. Opt. Express 2015, 23, 23185–23194. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, Y.; Zhai, Z.; Fang, Z.; Tao, Q.; Perrie, W.; Edwarson, S.P.; Dearden, G. Dynamic laser beam shaping for material processing using hybrid holograms. Opt. Laser Tech. 2018, 102, 68–73. [Google Scholar] [CrossRef]
- Hasegawa, S.; Ito, H.; Toyoda, H.; Hayasaki, Y. Massively parallel femtosecond laser processing. Opt. Express 2016, 24, 18513–18524. [Google Scholar] [CrossRef]
- Jesacher, A.; Booth, M.J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt. Express 2019, 18, 21090–21099. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, S.; Hayasaki, Y. Holographic Femtosecond Laser Processing with Multiplexed Phase Fresnel Lenses Displayed on a Liquid Crystal Spatial Light Modulator. Opt. Rev. 2007, 14, 208–213. [Google Scholar] [CrossRef]
- Chaen, K.; Takahashi, H.; Hasegawa, S.; Hayasaki, Y. Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing. Opt. Commun. 2007, 280, 165–172. [Google Scholar] [CrossRef]
- Abe, T.; Hasegawa, S.; Takahashi, H.; Ota, M.; Hayasaki, Y. In-process debris removal in femtosecond laser processing. Appl. Phys. A 2017, 123, 700–706. [Google Scholar] [CrossRef]
- Hanada, Y.; Sugioka, K.; Kawano, H.; Tsuchimoto, T.; Miyamoto, I.; Miyawaki, A.; Midorikawa, K. Selective cell culture on UV transparent polymer by F2 laser surface modification. Appl. Surf. Sci. 2009, 255, 9885–9888. [Google Scholar] [CrossRef]
- Glover, T.E.; Ackerman, G.D.; Lee, R.W.; Young, D.A. Probing particle synthesis during femtosecond laser ablation: Initial phase transition kinetics. Appl. Phys. B 2004, 78, 995–1000. [Google Scholar] [CrossRef]
- Semaltianos, N.G. Nanoparticles by Laser Ablation. Crit. Rev. Solid State Mater. Sci. 2010, 35, 105–124. [Google Scholar] [CrossRef]
- Tan, B.; Venkatakrishnan, K. Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air. Opt. Express 2009, 17, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Riveiro, A.; Soto, R.; Comesaña, R.; Boutinguiza, M.; Vala, J.D.; Quintero, F.; Lusquiños, F.; Pou, J. Laser surface modification of PEEK. Appl. Surf. Sci. 2012, 258, 9437–9442. [Google Scholar] [CrossRef]
- Liang, F.; Lehr, J.; Danielczak, L.; Leask, R.; Kietzig, A.M. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining. Int. J. Mol. Sci. 2014, 15, 13681–13696. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Fan, P.; Zhong, M.; Zhang, H.; Xie, Y.; Lin, C. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl. Surf. Sci. 2014, 311, 461–467. [Google Scholar] [CrossRef]
No. of Pulses | 1 | 500 | 1000 | 3000 | 10,000 | |
---|---|---|---|---|---|---|
Distance [µm] | ||||||
100 | □ | ○ | ○ | ○ | ○ | |
1000 | × | □ | ○ | ○ | ○ | |
4000 | × | □ | □ | □ | □ | |
10,000 | × | × | × | □ | □ |
Substrate | Arithmetic Mean Surface Roughness [nm] | Contact Angle [°] | Wettability |
---|---|---|---|
(a) Glass slide | 21.2 ± 0.15 | 27 | Hydrophilic |
(b) CYTOP thin film | 20.1 ± 1.42 | 112 | Hydrophobic |
(c) Monolayer structure | 18.9 ± 1.37 | 113 | Hydrophobic |
(d) Network structure | 180.6 ± 6.10 | 158 | Superhydrophobic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozaki, R.; Ishida, K.; Morita, E.; Hanada, Y. Nanoparticle Deposition of Fluoropolymer CYTOP via Holographic Femtosecond Laser Processing and Its Biochip Application. Appl. Sci. 2020, 10, 7243. https://doi.org/10.3390/app10207243
Ozaki R, Ishida K, Morita E, Hanada Y. Nanoparticle Deposition of Fluoropolymer CYTOP via Holographic Femtosecond Laser Processing and Its Biochip Application. Applied Sciences. 2020; 10(20):7243. https://doi.org/10.3390/app10207243
Chicago/Turabian StyleOzaki, Ryo, Kotaro Ishida, Eiji Morita, and Yasutaka Hanada. 2020. "Nanoparticle Deposition of Fluoropolymer CYTOP via Holographic Femtosecond Laser Processing and Its Biochip Application" Applied Sciences 10, no. 20: 7243. https://doi.org/10.3390/app10207243
APA StyleOzaki, R., Ishida, K., Morita, E., & Hanada, Y. (2020). Nanoparticle Deposition of Fluoropolymer CYTOP via Holographic Femtosecond Laser Processing and Its Biochip Application. Applied Sciences, 10(20), 7243. https://doi.org/10.3390/app10207243