Antibiotic Potential and Chemical Composition of the Essential Oil of Piper caldense C. DC. (Piperaceae)
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition
2.2. Antifungal Activity
2.2.1. Cell Viability Curve and IC50
2.2.2. Cell Viability Curve and Minimum Fungicidal Concentration (MFC)
2.2.3. Activity of the Piper caldense in the Control of Virulence of Candida albicans
3. Discussion
4. Materials and Methods
4.1. Botanical Material
4.2. Extraction of Volatile Terpenes and Determination of the Chemical Composition
4.3. Drugs, Reagents, Solution Preparation and Fungal Strains
4.4. Determination of Minimum Inhibitory Concentration (MIC)
4.5. Evaluation of Modulating Activity of Natural Product
4.6. Determination of Minimum Fungicidal Concentration (MFC)
4.7. Effect of Natural Product on Fungal Morphology
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barbosa-Filho, V.M.; Waczuk, E.P.; Leite, N.P.; Menezes, I.R.A.; Costa, J.G.M.; Lacerda, S.R.; Adedara, I.A.; Coutinho, H.D.M.; Posser, T.; Kamdem, J.P. Phytocompounds and modulatory effects of Anacardium microcarpum (cajui) on antibiotic drugs used in clinical infections. Drug. Des. Dev. Ther. 2015, 9, 5965–5972. [Google Scholar]
- Rodrigues, F.C.; Santos, A.T.L.; Machado, A.J.T.; Bezerra, C.F.; Freitas, T.S.; Coutinho, H.D.M.; Morais-Braga, M.F.B.; Bezerra, J.W.A.; Duarte, A.E.; Kandem, J.P.; et al. Chemical composition and anti-Candida potencial of the extracts of Tarenaya spinosa (Jacq.) Raf. (Cleomaceae). Comp. Immunol. Microb. 2019, 64, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Chaves, T.P.; Fernandes, F.H.A.; Santana, C.P.; Santos, J.S.; Medeiros, F.D.; Felismino, D.C.; Santos, V.L.; Catão, R.M.R.; Coutinho, H.D.M.; Medeiros, A.C.D. Evaluation of the interaction between the Poincianella pyramidalis (Tul.) LP queiroz extract and antimicrobials using biological and analytical models. PLoS ONE 2016, 11, 1–23. [Google Scholar] [CrossRef]
- Chaves, T.P.; Pinheiro, R.E.; Melo, E.S.; Soares, M.J.S.; Souza, J.S.M.; Andrade, T.B.; Lemos, T.L.G.; Coutinho, H.D.M. Essential oil of Eucalyptus camaldulensis Dehn potentiates β-lactam activity against Staphylococcus aureus and Escherichia coli resistant strains. Ind. Crop. Prod. 2018, 112, 70–74. [Google Scholar] [CrossRef]
- Karkowska-Kuleta, J.; Rapala-Kozik, M.; Kozik, A. Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim. Pol. 2009, 56, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Morais-Braga, M.F.B.; Sales, D.L.; Carneiro, J.N.P.; Machado, A.J.T.; Santos, A.T.L.; Freitas, M.A.; Martins, G.M.A.B.; Leite, N.F.; Matos, Y.M.L.S.; Tintino, S.R.; et al. Psidium guajava L. and Psidium brownianum Mart ex DC.: Chemical composition and anti–Candida effect in association with fluconazole. Microb. Pathogenesis. 2016, 95, 200–207. [Google Scholar] [CrossRef]
- Sudbery, P.; Gow, N.; Berman, J. The distinct morphogenic states of Candida albicans. Trends. Microbiol. 2004, 12, 317–324. [Google Scholar] [CrossRef]
- Albuquerque, U.P.; Medeiros, P.M.D.; Ramos, M.A.; Júnior, F.; Soares, W.; Nascimento, A.L.B.; Avilez, W.M.T.; Melo, J.G.D. Are ethnopharmacological surveys useful for the discovery and development of drugs from medicinal plants? Rev. Bras. Farmacogn. 2014, 24, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, E.F.; Carvalho-Silva, M.; Monteiro, D.; Medeiros, E.S.; Queiroz, G.A. Piperaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, 2015. Available online: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB12756 (accessed on 7 June 2018).
- Cardozo-Junior, E.L.; Chaves, M.C.O. Caldensin, a new natural n-methylaristolactam from Piper caldense. Pharm. Biol. 2003, 41, 216–218. [Google Scholar] [CrossRef] [Green Version]
- Alves, H.S.; Rocha, W.R.V.; Fernandes, A.F.C.; Nunes, L.E.; Pinto, D.S.; Costa, J.I.V.; Chaves, M.C.O.; Catão, R.M.R. Antimicrobial activity of products obtained from Piper species (Piperaceae). Rev. Cub. Plant. Med. 2016, 21, 168–180. [Google Scholar]
- Yang, D.; Michel, L.; Chaumont, J.P.; Millet-Clerc, J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathol. 2000, 148, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.H.; Li, X.C. Antifungal compounds from Piper species. Current Bio. Comp. 2011, 7, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, R.V.; Bieski, I.G.C.; Balogun, S.O.; Oliveira-Martins, D.T. Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. J. Ethnopharmacol. 2017, 205, 69–102. [Google Scholar] [CrossRef] [PubMed]
- Carrara, V.D.S.; Souza, A.D.; Dias-Filho, B.P.; Nakamura, C.V.; Paulo, L.F.D.; Young, M.; Svidzinski, T.I.E.; García-Cortez, D.A. Chemical composition and antifungal activity of the essential oil from Piper amalago L. Lat. Am. J. Pharm. 2010, 29, 1459–1462. [Google Scholar]
- Hastuti, U.S.; Ummah, Y.P.I.; Khasanah, H.N. Antifungal activity of Piper aduncum and Peperomia pellucida leaf ethanol extract against Candida albicans. AIP. Conf. Proc. 2017, w/v, 789–798. [Google Scholar]
- Junairiah; Ni’matuzahroh; Zuraidassanaaz, N.I.; Sulistyorini, L. Antifungal and antibacterial activity of black betel (Piper betle L. var Nigra) extract. Biosci. Res. 2017, 14, 750–755. [Google Scholar]
- Guirado, O.A.A.; Cuéllar, A.C. Estrategias en la selección de las plantas medicinales a investigar. Rev. Cub. Plant. Med. 2008, 13, 1–10. [Google Scholar]
- Rocha, D.S.; Silva, J.M.D.; Navarro, D.M.D.A.F.; Camara, C.A.G.; Lira, C.S.D.; Ramos, C.S. Potential antimicrobial and chemical composition of essential oils from Piper caldense tissues. J. Mex. Chem. Soc. 2016, 60, 148–151. [Google Scholar]
- Bezerra, J.W.A.; Costa, A.R.; Freitas, M.A.; Rodrigues, F.C.; Souza, M.A.; Silva, A.R.P.; Santos, A.T.L.; Linhares, K.V.; Coutinho, H.D.M.; Morais-Braga, M.F.B. Chemical composition, antimicrobial, modulator and antioxidant activity of essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants. Comp. Immunol. Microb. 2019, 65, 58–64. [Google Scholar]
- Miguel, M.G.; Duarte, F.; Venâncio, F.; Tavares, R. Variation in themain componentes of the essential oils isolated from Thymbra capitata L. (Cav.) and Origanum vulgare L. J. Agr. Food. Chem. 2005, 53, 8162–8168. [Google Scholar]
- Bezerra, J.W.A.; Costa, A.R.; Silva, M.A.P.; Rocha, M.I.; Boligon, A.A.; Rocha, J.B.T.; Barros, L.M.; Kamdem, J.P. Chemical composition and toxicological evaluation of Hyptis suaveolens (L.) Poiteau (LAMIACEAE) in Drosophila melanogaster and Artemia salina. S. Afr. J. Bot. 2017, 113, 437–442. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Henriques, M.; Silva, S.; Ferreira, I.C. Activity of phenolic compounds from plant origin against Candida species. Ind. Crop. Prod. 2015, 74, 648–670. [Google Scholar] [CrossRef] [Green Version]
- Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Giannini, M.M. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 2013, 62, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.A.T.D. Estudo fitoquímico das folhas e frutos de Piper caldense C. DC. (Piperaceae); Universidade Federal da Paraíba: João Pessoa, Brazil, 2013. [Google Scholar]
- Santos, J.F.S.; Rocha, J.E.; Bezerra, C.F.; Silva, M.K.N.; Matos, Y.M.L.S.; Freitas, T.S.; Santos, A.T.L.; Cruz, R.P.; Machado, A.F.T.; Rodrigues, T.H.S.; et al. Chemical composition, antifungal activity and potential anti-virulence evaluation of the Eugenia uniflora essential oil against Candida spp. Food. Chem. 2018, 261, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Morais-Braga, M.F.B.; Carneiro, J.N.P.; Machado, A.J.T.; Sales, D.L.; Santos, A.T.; Boligon, A.A.; Athayde, M.L.; Menezes, I.R.A.; Souza, D.S.L.; Costa, J.G.M.; et al. Phenolic composition and medicinal usage of Psidium guajava L.: Antifungal activity or inhibition of virulence? Saudi J. Biol. Sci. 2016, 24, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Duarte, A.E.; Menezes, I.R.A.; Morais-Braga, M.F.B.; Leite, N.F.; Barros, L.M.; Waczuk, E.P.; Silva, M.A.P.; Boligon, A.; Rocha, J.B.T.; Souza, D.O.; et al. Antimicrobial activity and Modulatory effect of essential oil from the leaf of Rhaphiodon echinus (Nees & Mart) Schauer on some antimicrobial drugs. Molecules 2016, 21, 743–753. [Google Scholar]
- Sikkema, J.; Bont, J.A.; Poolman, B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 1994, 269, 8022–8028. [Google Scholar]
- Santos, F.S.M.; Bezerra, J.W.A.; Kamdem, J.P.; Boligon, A.A.; Anraku, M.M.; Silva, A.R.P.; Fidelis, K.R.; Leite, N.F.; Pinho, A.I.; Coutinho, H.D.M.; et al. Polyphenolic composition, antibacterial, modulator and neuroprotective activity of Tarenaya spinosa (Jacq.) Raf.(Cleomaceae). Asian. Pac. J. Trop. Biomed. 2019, 9, 12–17. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Javadpour, M.M.; Juban, M.M.; Lo, W.C.; Bishop, S.M.; Alberty, J.B.; Cowell, S.M.; Becker, C.L.; Mclaughlin, M.L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem. 1996, 39, 3107–3113. [Google Scholar] [CrossRef]
- Coutinho, H.D.M.; Costa, J.G.; Lima, E.O.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P. Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 2008, 54, 328–330. [Google Scholar] [CrossRef]
- Ernst, E.J.; Klepser, M.E.; Ernst, M.E.; Messer, S.A.; Pfaller, M.A. In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Micology 1999, 33, 75–80. [Google Scholar] [CrossRef]
- Sidrim, J.J.C.; Rocha, M.F.G. Micologia Médica à luz de autores contemporâneos, 1st ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2010. [Google Scholar]
Compounds | % | AIlit | MF |
---|---|---|---|
α-Pinene | 2.5 | 935 | C10H16 |
Camphene | 2.1 | 952 | C10H16 |
α-copaene | 2 | 1381 | C15H24 |
(E)-Caryophyllene | 2.6 | 1426 | C15H24 |
Aromadendrene | 2.7 | 1445 | C15H24 |
γ-muurolene | 4 | 1478 | C15H24 |
β-selinene | 3.2 | 1490 | C15H24 |
Bicyclogermacrene | 6.7 | 1492 | C15H24 |
Germacrene D | 5.3 | 1493 | C15H24 |
α-muurolene | 4.2 | 1498 | C15H24 |
δ-Cadinene | 7.6 | 1520 | C15H24 |
γ-Cadinene | 3.3 | 1521 | C15H24 |
α-Calacorene | 2.2 | 1551 | C15H20 |
β-Calacorene | 1.9 | 1572 | C15H20 |
Spathulenol | 9.1 | 1576 | C15H24O |
Caryophyllene oxide | 13.9 | 1580 | C15H24O |
Globulol | 2.3 | 1594 | C15H26O |
Rosifoliol | 1.3 | 1597 | C15H26O |
Humulene epoxide II | 1 | 1619 | C15H24O |
1.10-di-epi-Cubenol | 1.6 | 1624 | C15H26O |
1-epi-Cubenol | 3.4 | 1638 | C15H26O |
epi-alfa-muurolol | 3.1 | 1640 | C15H26O |
α-cadinol | 4.2 | 1650 | C15H26O |
α-Muurolol | 2.1 | 1651 | C15H26O |
Cadalene | 2 | 1667 | C15H18 |
Total sesquiterpenes | 89.7 | ||
Total monoterpenes | 4.6 | ||
Total identified (%) | 94.3 |
Products Tested | Yeast | |
---|---|---|
Candida albicans INCQS 40006 | Candida albicans URM 4387 | |
Fluconazole (FCZ) | 7.76 µg/mL | 7.73 µg/mL |
EOPc | 2256.24 µg/mL | 1790.24 µg/mL |
EOPc + FCZ | 12.37 µg/mL | 2.7 µg/mL |
Products Tested | Yeast | |
---|---|---|
Candida albicans INCQS 40006 | Candida albicans INCQS 40006 | |
Fluconazole (FCZ) | ≥16,384 μg/mL | 16 μg/mL |
EOPc | ≥16,384 μg/mL | 8192 μg/mL |
EOPc + FCZ | ≥16,384 μg/mL | 16 μg/mL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, J.W.A.; Rodrigues, F.C.; Pereira da Cruz, R.; Silva, L.E.d.; do Amaral, W.; Andrade Rebelo, R.; Begnini, I.M.; Fonseca Bezerra, C.; Iriti, M.; Varoni, E.M.; et al. Antibiotic Potential and Chemical Composition of the Essential Oil of Piper caldense C. DC. (Piperaceae). Appl. Sci. 2020, 10, 631. https://doi.org/10.3390/app10020631
Bezerra JWA, Rodrigues FC, Pereira da Cruz R, Silva LEd, do Amaral W, Andrade Rebelo R, Begnini IM, Fonseca Bezerra C, Iriti M, Varoni EM, et al. Antibiotic Potential and Chemical Composition of the Essential Oil of Piper caldense C. DC. (Piperaceae). Applied Sciences. 2020; 10(2):631. https://doi.org/10.3390/app10020631
Chicago/Turabian StyleBezerra, José Weverton Almeida, Felicidade Caroline Rodrigues, Rafael Pereira da Cruz, Luiz Everson da Silva, Wanderlei do Amaral, Ricardo Andrade Rebelo, Ieda Maria Begnini, Camila Fonseca Bezerra, Marcello Iriti, Elena Maria Varoni, and et al. 2020. "Antibiotic Potential and Chemical Composition of the Essential Oil of Piper caldense C. DC. (Piperaceae)" Applied Sciences 10, no. 2: 631. https://doi.org/10.3390/app10020631
APA StyleBezerra, J. W. A., Rodrigues, F. C., Pereira da Cruz, R., Silva, L. E. d., do Amaral, W., Andrade Rebelo, R., Begnini, I. M., Fonseca Bezerra, C., Iriti, M., Varoni, E. M., Melo Coutinho, H. D., & Bezerra Morais-Braga, M. F. (2020). Antibiotic Potential and Chemical Composition of the Essential Oil of Piper caldense C. DC. (Piperaceae). Applied Sciences, 10(2), 631. https://doi.org/10.3390/app10020631