Smart Learning
Abstract
:1. Introduction
2. A Review of the Contributions in this Special Issue
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreno, L.; Pedreño, A. Europa Frente a EE. UU. y China: Prevenir el Declive en la Era de la Inteligencia Artificial; University of Alicante: Alicante, Spain, 2020. [Google Scholar]
- Yu, Z. Visualizing Artificial Intelligence Used in Education Over Two Decades. J. Inf. Technol. Res. 2020, 13. [Google Scholar]
- Martens, A.; Uhrmacher, A.M. Adaptive tutoring processes and mental plans. In Intelligent Tutoring Systems, Proceedings of the 6th International Conference, ITS 2002, Biarritz, France; San Sebastian, Spain, 2–7 June 2002; Lecture Notes in Computer Science; Cerri, S.A., Gouardères, G., Paraguaçu, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 71–80. [Google Scholar]
- Ammar, W.B.H.; Chaabouni, M.; Ghezala, H.B. Recommender system for quality educational resources. In Intelligent Tutoring Systems, Proceedings of the 16th International Conference, ITS 2020, Athens, Greece, 8–12 June 2020; Lecture Notes in Computer Science; Kumar, V., Troussas, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 327–334. [Google Scholar]
- Waheed, S.-U.H.; Hassan, N.; Aljohani, R.; Hardman, J.; Alelyani, S.; Nawaz, R. Predicting academic performance of students from VLE big data using deep learning models. In Computers in Human Behavior; Elsevier: Amsterdam, The Netherlands, 2020; Volume 104, p. 106189. [Google Scholar] [CrossRef] [Green Version]
- Huang, A.Y.-Q.; Lu, O.H.T.; Huang, J.C.H.; Yin, C.J.; Yang, S.J.H. Predicting students’ academic performance by using educational big data and learning analytics: Evaluation of classification methods and learning logs. Interact. Learn. Environ. 2019, 28, 206–230. [Google Scholar] [CrossRef]
- Daniel, B.K. Big Data and data science: A critical review of issues for educational research. Br. J. Educ. Technol. 2017, 50, 101–113. [Google Scholar] [CrossRef] [Green Version]
- García-Holgado, A.; García-Peñalvo, F.J. A metamodel proposal for developing learning ecosystems. In Learning and Collaboration Technologies; Novel Learning Ecosystems; no. 10295; Proceedings of the 4th International Conference, LCT 2017, Vancouver, BC, Canada, 9–14 July 2017; Lecture Notes in Computer Science; Held as Part of HCI International 2017; Part I; Zaphiris, P., Ioannou, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 100–109. [Google Scholar]
- Garcia-Holgado, A.; García-Peñalvo, F.J. Validation of the learning ecosystem metamodel using transformation rules. Future Gener. Comput. Syst. 2019, 91, 300–310. [Google Scholar] [CrossRef] [Green Version]
- Hwang, G.-J. Definition, framework and research issues of smart learning environments—A context-aware ubiquitous learning perspective. Smart Learn. Environ. 2014, 1, 492. [Google Scholar] [CrossRef]
- Molina-Carmona, R.; Villagrá-Arnedo, C.J. Smart learning. In TEEM’18: Sixth Edition Technological Ecosystems for Enhancing Multiculturality, Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 24–26 October 2018; García-Peñalvo, F.J., Ed.; ACM: New York, NY, USA, 2018; pp. 645–647. [Google Scholar]
- Hwang, G.-J.; Tsai, C.-C.; Yang, S.J.H. Criteria, Strategies and Research Issues of Context-Aware Ubiquitous Learning. J. Educ. Technol. Soc. 2008, 11, 81–91. [Google Scholar]
- Molina-Carmona, R.; Villagrá-Arnedo, C.J. Advances in smart learning. In TEEM’19, Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality, Leon, Spain, 16–18 October 2019; ICPS: ACM International Conference Proceedings Series; Conde-González, M.Á., Rodríguez-Sedano, F.J., Fernández-Llamas, C., García-Peñalvo, F.J., Eds.; ACM: New York, NY, USA, 2019; pp. 649–652. [Google Scholar]
- García-Peñalvo, F.J. Learning Analytics as a Breakthrough in Educational Improvement. In Radical Solutions and Learning Analytics: Personalised Learning and Teaching Through Big Data; Lecture Notes in Educational, Technology; Burgos, D., Ed.; Springer: Singapore, 2020; pp. 1–15. [Google Scholar]
- Alier-Forment, M.; Amo-Filvà, D.; García-Peñalvo, F.J.; Fonseca-Escudero, D.; Casañ, M.J. Learning analytics’ privacy on the blockchain. In TEEM’18: Sixth Edition Technological Ecosystems for Enhancing Multiculturality, Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 24–26 October 2018; García-Peñalvo, F.J., Ed.; ACM: New York, NY, USA, 2018; pp. 294–298. [Google Scholar]
- Amo, D.; Alier, M.; García-Peñalvo, F.J.; Fonseca, D.; Casañ, M.J. Protected Users: A Moodle Plugin to Improve Confidentiality and Privacy Support through User Aliases. Sustainability 2020, 12, 2548. [Google Scholar] [CrossRef] [Green Version]
- García-Peñalvo, F.J.; Corell, A. La COVID-19: ¿Enzima de la transformación digital de la docencia o reflejo de una crisis metodológica y competencial en la educación superior? Campus Virtuales 2020, 9. [Google Scholar]
- García-Peñalvo, F.J.; Corell, A.; Abella-García, V.; Grande, M. La evaluación online en la educación superior en tiempos de la COVID-19. Educ. Knowl. Soc. 2020, 21, 12. [Google Scholar] [CrossRef]
- Habib, H.; González, C.; Collazos, C.A.; Yousef, M. Estudio exploratorio en iberoamérica sobre procesos de enseñanza-aprendizaje y propuesta de evaluación en tiempos de pandemia. Educ. Knowl. Soc. 2020, 21, 17. [Google Scholar] [CrossRef]
- Daniel, S.J. Education and the COVID-19 pandemic. Prospects 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodges, C.; Moore, S.; Lockee, B.; Trust, T.; Bond, A. The Difference between Emergency Remote Teaching and Online Learning. In Educause Review. Available online: https://bit.ly/3b0Nzx7 (accessed on 3 October 2020).
- Tinoco-Giraldo, H.; Sánchez, E.M.T.; García-Peñalvo, F.J. E-Mentoring in Higher Education: A Structured Literature Review and Implications for Future Research. Sustainability 2020, 12, 4344. [Google Scholar] [CrossRef]
- Siemens, G. Learning Analytics. The Emergence of a Discipline. Am. Behav. Sci. 2013, 57, 1380–1400. [Google Scholar] [CrossRef] [Green Version]
- Uskov, V.L.; Bakken, J.P.; Byerly, A.; Shah, A. Machine learning-based predictive analytics of student academic performance. In STEM Education, Proceedings of the 2019 Global Engineering Education Conference (EDUCON), Dubai, United Arab Emirates, 8–11 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1370–1376. [Google Scholar]
- Liz-Domínguez, M.; Rodríguez, M.C.; Llamas-Nistal, M.; Mikic-Fonte, F.A. Systematic Literature Review of Predictive Analysis Tools in Higher Education. Appl. Sci. 2019, 9, 5569. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Sáiz-Manzanares, M.C.; Marticorena-Sánchez, R.; García-Osorio, C. Monitoring Students at the University: Design and Application of a Moodle Plugin. Appl. Sci. 2020, 10, 3469. [Google Scholar] [CrossRef]
- Moreno-Marcos, P.M.; Muñoz-Merino, P.J.; Alario-Hoyos, C.; Kloos, C.D. Re-Defining, Analyzing and Predicting Persistence Using Student Events in Online Learning. Appl. Sci. 2020, 10, 1722. [Google Scholar] [CrossRef] [Green Version]
- Chaparro-Peláez, J.; Iglesias-Pradas, S.; Rodríguez-Sedano, F.J.; Acquila-Natale, E. Extraction, Processing and Visualization of Peer Assessment Data in Moodle. Appl. Sci. 2019, 10, 163. [Google Scholar] [CrossRef] [Green Version]
- Seidewitz, E. What models mean. IEEE Softw. 2003, 20, 26–32. [Google Scholar] [CrossRef]
- Im, Y.; Park, J.; Kim, M.; Park, K. Comparative Study on Perceived Trust of Topic Modeling Based on Affective Level of Educational Text. Appl. Sci. 2019, 9, 4565. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Ingelmo, A.; García-Peñalvo, F.J.; Theron, R.; Conde-González, M. Ángel Representing Data Visualization Goals and Tasks through Meta-Modeling to Tailor Information Dashboards. Appl. Sci. 2020, 10, 2306. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Ingelmo, A.; Garcia, B.A.; Theron, R. Information Dashboards and Tailoring Capabilities—A Systematic Literature Review. IEEE Access 2019, 7, 109673–109688. [Google Scholar] [CrossRef]
- Vázquez-Ingelmo, A.; García-Peñalvo, F.J.; Theron, R.; Filvà, D.A.; Escudero, D.F. Connecting domain-specific features to source code: Towards the automatization of dashboard generation. Clust. Comput. J. Netw. Softw. Tools Appl. 2019, in press. [Google Scholar] [CrossRef]
- Grivokostopoulou, F.; Kovas, K.; Perikos, I. The Effectiveness of Embodied Pedagogical Agents and Their Impact on Students Learning in Virtual Worlds. Appl. Sci. 2020, 10, 1739. [Google Scholar] [CrossRef] [Green Version]
- Walkington, C.; Bernacki, M.L. Appraising research on personalized learning: Definitions, theoretical alignment, advancements, and future directions. J. Res. Technol. Educ. 2020, 52, 235–252. [Google Scholar] [CrossRef]
- Hlioui, F.; Alioui, N.; Gargouri, F. A survey on learner models in adaptive E-learning systems. In Proceedings of the 13th International Conference of Computer Systems and Applications (AICCSA), Agadir, Morocco, 29 November–2 December 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Real-Fernández, A.; Molina-Carmona, R.; Llorens, F. Computational Characterization of Activities and Learners in a Learning System. Appl. Sci. 2020, 10, 2208. [Google Scholar] [CrossRef] [Green Version]
- Sleeman, D.; Brown, J.S. Intelligent Tutoring Systems; Academic Press: London, UK, 1982. [Google Scholar]
- Subirats, L.; Pérez, L.; Hernández, C.M.; Fort, S.; Sacha, G.M. A Granularity-Based Intelligent Tutoring System for Zooarchaeology. Appl. Sci. 2019, 9, 4960. [Google Scholar] [CrossRef] [Green Version]
- Schez-Sobrino, S.; Gmez-Portes, C.; Vallejo, D.; Glez-Morcillo, C.; Redondo, M.Á. An Intelligent Tutoring System to Facilitate the Learning of Programming through the Usage of Dynamic Graphic Visualizations. Appl. Sci. 2020, 10, 1518. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.S.; Cheng, I.L.; Chew, S.W. Evolution Is not enough: Revolutionizing Current Learning Environments to Smart Learning Environments. Int. J. Artif. Intell. Educ. 2016, 26, 561–581. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Márquez, N.L.; Baldominos, A.; Martínez, A.C.; Perez-Nieto, M.A. An Exploratory Analysis of the Implementation and Use of an Intelligent Platform for Learning in Primary Education. Appl. Sci. 2020, 10, 983. [Google Scholar] [CrossRef] [Green Version]
- García-Peñalvo, F.J.; Bello, A.; Dominguez, A.; Romero, R.M. Acciones, políticas y estrategias para el balance de género en el ámbito STEM: Resultados de una dinámica World Café. Educ. Knowl. Soc. 2019, 20, 15. [Google Scholar] [CrossRef]
- Gikandi, J.; Morrow, D.; Davis, N. Online formative assessment in higher education: A review of the literature. Comput. Educ. 2011, 57, 2333–2351. [Google Scholar] [CrossRef]
- González-González, C.; Moro, A.I.; Moro, A.I. Implementation of E-Proctoring in Online Teaching: A Study about Motivational Factors. Sustainability 2020, 12, 3488. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.; Wang, Q.; Chen, J.; Li, Y. An Exploration of Three-Dimensional Integrated Assessment for Computational Thinking. J. Educ. Comput. Res. 2015, 53, 562–590. [Google Scholar] [CrossRef]
- Guerrero-Higueras Ángel, M.; Fernández-Llamas, C.; Sánchez-González, L.; Fernández, A.G.; Costales, G.E.; González, M.A.C. Academic Success Assessment through Version Control Systems. Appl. Sci. 2020, 10, 1492. [Google Scholar] [CrossRef] [Green Version]
- Melesko, J.; Novickij, V. Computer Adaptive Testing Using Upper-Confidence Bound Algorithm for Formative Assessment. Appl. Sci. 2019, 9, 4303. [Google Scholar] [CrossRef] [Green Version]
- Pardeshi, V.H. Cloud Computing for Higher Education Institutes: Architecture, Strategy and Recommendations for Effective Adaptation. Procedia Econ. Finance 2014, 11, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Stantchev, V.; Colomo-Palacios, R.; Soto-Acosta, P.; Misra, S. Learning management systems and cloud file hosting services: A study on students’ acceptance. Comput. Hum. Behav. 2014, 31, 612–619. [Google Scholar] [CrossRef]
- Tobarra, L.; Robles-Gómez, A.; Pastor-Vargas, R.; Hernández, R.; Duque, A.; Cano, J. Students’ Acceptance and Tracking of a New Container-Based Virtual Laboratory. Appl. Sci. 2020, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.; Kim, D.; Choo, H. Internet of Everything: A Large-Scale Autonomic IoT Gateway. IEEE Trans. Multi Scale Comput. Syst. 2017, 3, 206–214. [Google Scholar] [CrossRef]
- Johnson, L.; Adams, S.; Cummins, M. The NMC Horizon Report: 2012 Higher Education Edition; The New Media Consortium: Austin, TX, USA, 2012. [Google Scholar]
- Fernández-Caramés, T.M.; Fraga-Lamas, P. Towards Next Generation Teaching, Learning, and Context-Aware Applications for Higher Education: A Review on Blockchain, IoT, Fog and Edge Computing Enabled Smart Campuses and Universities. Appl. Sci. 2019, 9, 4479. [Google Scholar] [CrossRef] [Green Version]
- Turcu, C.; Turcu, C.; Chiuchisan, I. Blockchain and its Potential in Education. In Proceedings of the International Conference on Virtual Learning—ICVL 2018, Alba Iulia, Romania, 26–28 October 2018. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. MCC’12: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Proceedings of the SIGCOMM’12: ACM SIGCOMM 2012 Conference, Helsinki, Finland, August 2012; ACM: New York, NY, USA, 2012; pp. 13–16. [Google Scholar]
- Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Sretenovic, M.B.; Milenkovic, I.; Jovanovic, B.; Simic, D.; Minovic, M.; Milovanovic, M. Bringing Biometric Sensors to the Classroom: A Fingerprint Acquisition Laboratory for Improving Student Motivation and Commitment. Appl. Sci. 2020, 10, 880. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.S.; Durão, N.; Fonseca, D.; Ferreira, M.J.; Moreira, F. An Educational Approach for Present and Future of Digital Transformation in Portuguese Organizations. Appl. Sci. 2020, 10, 757. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Peñalvo, F.J.; Casado-Lumbreras, C.; Colomo-Palacios, R.; Yadav, A. Smart Learning. Appl. Sci. 2020, 10, 6964. https://doi.org/10.3390/app10196964
García-Peñalvo FJ, Casado-Lumbreras C, Colomo-Palacios R, Yadav A. Smart Learning. Applied Sciences. 2020; 10(19):6964. https://doi.org/10.3390/app10196964
Chicago/Turabian StyleGarcía-Peñalvo, Francisco José, Cristina Casado-Lumbreras, Ricardo Colomo-Palacios, and Aman Yadav. 2020. "Smart Learning" Applied Sciences 10, no. 19: 6964. https://doi.org/10.3390/app10196964
APA StyleGarcía-Peñalvo, F. J., Casado-Lumbreras, C., Colomo-Palacios, R., & Yadav, A. (2020). Smart Learning. Applied Sciences, 10(19), 6964. https://doi.org/10.3390/app10196964