Osteogenic Potential of Fast Set Bioceramic Cements: Molecular and In Vitro Study
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Osteogenic Differentiation
2.2. Biomaterial Preparation and Eluate Collection
2.3. Cell Attachment and Biocompatibility
- (a)
- 1 × 104 MG-63 cells cultured in 1 mL of NM (positive control);
- (b)
- 1 × 104 MG-63 cells cultured in 1 mL of EM, obtained, as previously described;
- (c)
- 1 × 104 MG-63 cells cultured in 1 mL of NM together with a pre-prepared bioceramic disc.
2.4. Osteogenic Differentiation
2.5. Alkaline Phosphatase Activity
2.6. Mineralization and Alizarin Red S Staining
2.7. Quantitative Real-Time PCR (RT-qPCR)
2.8. Statistical Analysis
3. Results
3.1. Cellular Attachment and Biocompatibility
3.2. Osteogenic Differentiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peters, L.B.; Wesselink, P.R.; Buijs, J.F.; Van Winkelhoff, A.J. Viable Bacteria in Root Dentinal Tubules of Teeth with Apical Periodontitis. J. Endod. 2001, 27, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Ørstavik, D.; Pitt Ford, T.R. Essential Endodontology: Prevention and Treatment of Apical Periodontitis, 2nd ed.; Blackwell Munksgaard: Oxford, UK, 2008. [Google Scholar]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Int. Endod. J. 2017, 51, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Parirokh, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part II: Other clinical applications and complications. Int. Endod. J. 2017, 51, 284–317. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Watson, T.; Ford, T.P. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J. Endod. 1993, 19, 591–595. [Google Scholar] [CrossRef]
- Yoshino, P.; Nishiyama, C.K.; Modena, K.C.D.S.; Santos, C.F.; Sipert, C.R. In vitro cytotoxicity of white MTA, MTA Fillapex® and portland cement on human periodontal ligament fibroblasts. Braz. Dent. J. 2013, 24, 111–116. [Google Scholar] [CrossRef]
- Nowicka, A.; Lipski, M.; Parafiniuk, M.; Sporniak-Tutak, K.; Lichota, D.; Kosierkiewicz, A.; Kaczmarek, W.; Buczkowska-Radlińska, J. Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J. Endod. 2013, 39, 743–747. [Google Scholar] [CrossRef]
- Camilleri, J.; Sorrentino, F.; Damidot, D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent. Mater. 2013, 29, 580–593. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Taddei, P.; Siboni, F.; Modena, E.; Ginebra, M.-P.; Prati, C. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: Early fluorapatite formation in a phosphate-containing solution. Int. Endod. J. 2011, 44, 938–949. [Google Scholar] [CrossRef]
- Trope, M.; Bunes, A.; Debelian, G. Root filling materials and techniques: Bioceramics a new hope? Endod. Top. 2015, 32, 86–96. [Google Scholar] [CrossRef]
- Haapasalo, M.; Parhar, M.; Huang, X.; Wei, X.; Lin, J.; Shen, Y. Clinical use of bioceramic materials. Endod. Top. 2015, 32, 97–117. [Google Scholar] [CrossRef]
- Wang, Z. Bioceramic materials in endodontics. Endod. Top. 2015, 32, 3–30. [Google Scholar] [CrossRef]
- Zhou, H.M.; Shen, Y.; Wang, Z.; Li, L.; Zheng, Y.; Häkkinen, L.; Haapasalo, M. In vitro cytotoxicity evaluation of a novel root repair material. J. Endod. 2013, 39, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Taha, N.A.; Safadi, R.A.; Alwedaie, M.S. Biocompatibility evaluation of Endosequence root repair paste in the connective tissue of rats. J. Endod. 2016, 42, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Willershausen, I.; Wolf, T.; Kasaj, A.; Weyer, V.; Willershausen, B.; Briseño-Marroquín, B. Influence of a bioceramic root end material and mineral trioxide aggregates on fibroblasts and osteoblasts. Arch. Oral Biol. 2013, 58, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.J.; Du, T.F.; Li, H.B.; Shen, Y.; Mobuchon, C.; Hieawy, A.; Wang, Z.J.; Yang, Y.; Ma, J.; Haapasalo, M. Physical properties and hydration behavior of a fast-setting bioceramic endodontic material. BMC Oral Health 2016, 16, 23. [Google Scholar] [CrossRef]
- Primus, C.M.; Tay, F.R.; Niu, L.-N. Bioactive tri/dicalcium silicate cements for treatment of pulpal and periapical tissues. Acta Biomater. 2019, 96, 35–54. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, Q.; Zhou, X.; Gao, Y.; Huang, D. A comparative study on root canal repair materials: A cytocompatibility assessment in L929 and MG63 cells. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Chen, C.L.; Huang, T.H.; Ding, S.J.; Shie, M.Y.; Kao, C.T. Comparison of calcium and silicate cement and mineral trioxide aggregate biologic effects and bone markers expression in MG63 cells. J. Endod. 2009, 35, 682–685. [Google Scholar] [CrossRef]
- Pizzoferrato, A.; Ciapetti, G.; Stea, S.; Cenni, E.; Arciola, C.R.; Granchi, D. Cell culture methods for testing biocompatibility. Clin. Mater. 1994, 15, 173–190. [Google Scholar] [CrossRef]
- Zhu, Q.; Haglund, R.; Safavi, K.E.; Spangberg, L.S. Adhesion of human osteoblasts on root-end filling materials. J. Endod. 2000, 26, 404–406. [Google Scholar] [CrossRef]
- Bidar, M.; Afshari, J.T.; Shahrami, F. Evaluation of adhesion and morphology of human osteoblasts to white MTA and Portland cement. Iran. Endod. J. 2007, 2, 87–90. [Google Scholar] [PubMed]
- Gomes-Cornélio, A.L.; Rodrigues, E.M.; Salles, L.; Mestieri, L.B.; Faria, G.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Bioactivity of MTA Plus, Biodentine and an experimental calcium silicate-based cement on human osteoblast-like cells. Int. Endod. J. 2016, 50, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Margunato, S.; Taşlı, P.N.; Aydın, S.; Kazandag, M.K.; Şahin, F. In vitro evaluation of ProRoot MTA, Biodentine, and MM-MTA on human alveolar bone marrow stem cells in terms of biocompatibility and mineralization. J. Endod. 2015, 41, 1646–1652. [Google Scholar] [CrossRef] [PubMed]
- Gregory, C.; Gunn, W.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Harrington, D.; D’Agostino, R.B.; Gatsonis, C.; Hogan, J.W.; Hunter, D.J.; Normand, S.L.T.; Drazen, J.M.; Hamel, M.B. New guidelines for statistical reporting in the journal. N. Engl. J. Med. 2019, 381, 285–286. [Google Scholar] [CrossRef]
- Cheng, L.; Ye, F.; Yang, R.; Lu, X.; Shi, Y.; Li, L.; Fan, H.; Bu, H. Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 2010, 6, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shen, Y.; Haapasalo, M. Dental materials with antibiofilm properties. Dent. Mater. 2014, 30, e1–e16. [Google Scholar] [CrossRef] [PubMed]
- Attik, G.N.; Villat, C.; Hallay, F.; Pradelle-Plasse, N.; Bonnet, H.; Moreau, K.; Colon, P.; Grosgogeat, B. In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblasts cells: Biodentine™ versus MTA. Int. Endod. J. 2014, 47, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Ford, T.P.; Torabinejad, M.; McDonald, F. Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials 1999, 20, 167–173. [Google Scholar] [CrossRef]
- Chiang, T.Y.; Ding, S.J. Comparative physicochemical and biocompatible properties of radiopaque dicalcium silicate cement and mineral trioxide aggregate. J. Endod. 2010, 36, 1683–1687. [Google Scholar] [CrossRef]
- Clover, J.; Gowen, M. Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone 1994, 15, 585–591. [Google Scholar] [CrossRef]
- Ding, S.J.; Kao, C.T.; Chen, C.L.; Shie, M.Y.; Huang, T.H. Evaluation of human osteosarcoma cell line genotoxicity effects of mineral trixoide aggregate and calcium silicate cements. J. Endod. 2010, 36, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Laurent, P.; Camps, J.; About, I. BiodentineTM induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int. Endod. J. 2012, 45, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Golub, E.E.; Boesze-Battaglia, K. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop. 2007, 18, 444–448. [Google Scholar] [CrossRef]
- Xie, Z.; Tang, S.; Ye, G.; Wang, P.; Li, J.; Liu, W.; Li, M.; Wang, S.; Wu, X.; Cen, S.; et al. Interleukin-6/interleukin-6 receptor complex promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther. 2018, 9, 13. [Google Scholar] [CrossRef]
Material | Composition | pH |
---|---|---|
Root Repair Material Putty (RRMPU, Brasseler) | Calcium silicates, zirconium oxide, tantalum oxide, calcium phosphate monobasic | >12 |
Root Repair Material Paste (RRMPA, Brasseler) | Calcium silicates, zirconium oxide, tantalum oxide, calcium phosphate monobasic | >12 |
Fast-set Putty (FSP, Brasseler) | Calcium silicates, zirconium oxide, tantalum oxide, calcium phosphate monobasic | >12 |
Biodentine (BIO, Septodont, Saint-Maur-des-Fosses, France) | Powder: tricalcium silicate, dicalcium silicate, calcium carbonate, zirconium oxide, calcium oxide, iron oxide Liquid: calcium chloride, a hydrosoluble polymer, water | 9 |
ProRoot® Mineral Trioxide Aggregate (MTA, Dentsply Maillefer, Ballaigues, Switzerland) | Powder: tricalcium silicate, dicalcium silicate, bismuth oxide, tricalcium aluminate, calcium sulfate dihydrate or gypsum Liquid: water | 9 |
ARS | p-Value | ALP | p-Value | ||
---|---|---|---|---|---|
NM vs. DM | ns | 0.998 | NM vs. DM | ns | >0.99 |
NM vs. RRMPU + DM | **** | <0.0001 | NM vs. RRMPU + DM | * | 0.02 |
NM vs. RRMPA + DM | ns | 0.9549 | NM vs. RRMPA + DM | *** | <0.001 |
NM vs. FSP + DM | *** | 0.0003 | NM vs. FSP + DM | *** | <0.001 |
NM vs. BIO + DM | **** | <0.0001 | NM vs. BIO + DM | *** | <0.001 |
NM vs. MTA + DM | ns | 0.9843 | NM vs. MTA + DM | *** | <0.001 |
DM vs. RRMPU + DM | **** | <0.0001 | DM vs. RRMPU + DM | ** | 0.01 |
DM vs. RRMPA + DM | ns | 0.9993 | DM vs. RRMPA + DM | *** | <0.001 |
DM vs. FSP + DM | *** | 0.0008 | DM vs. FSP + DM | *** | <0.001 |
DM vs. BIO + DM | **** | <0.0001 | DM vs. BIO + DM | *** | <0.001 |
DM vs. MTA + DM | ns | >0.9999 | DM vs. MTA + DM | *** | <0.001 |
RRMPU + DM vs. RRMPA + DM | **** | <0.0001 | RRMPU + DM vs. RRMPA + DM | *** | <0.001 |
RRMPU + DM vs. FSP + DM | **** | <0.0001 | RRMPU + DM vs. FSP + DM | *** | <0.001 |
RRMPU + DM vs. BIO + DM | ns | 0.9959 | RRMPU + DM vs. BIO + DM | *** | <0.001 |
RRMPU + DM vs. MTA + DM | **** | <0.0001 | RRMPU + DM vs. MTA + DM | *** | <0.001 |
RRMPA + DM vs. FSP + DM | ** | 0.0016 | RRMPA + DM vs. FSP + DM | *** | <0.001 |
RRMPA + DM vs. BIO + DM | **** | <0.0001 | RRMPA + DM vs. BIO + DM | ns | >0.99 |
RRMPA + DM vs. MTA + DM | ns | >0.9999 | RRMPA + DM vs. MTA + DM | ns | 0.13 |
FSP + DM vs. BIO + DM | **** | <0.0001 | FSP + DM vs. BIO + DM | *** | <0.001 |
FSP + DM vs. MTA + DM | ** | 0.0012 | FSP + DM vs. MTA + DM | *** | <0.001 |
BIO + DM vs. MTA + DM | **** | <0.0001 | BIO + DM vs. MTA + DM | ns | 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasqualini, D.; Comba, A.; Annaratone, L.; Mola, V.; Alovisi, M.; Breschi, L.; Mazzoni, A.; Scotti, N.; Cassoni, P.; Berutti, E. Osteogenic Potential of Fast Set Bioceramic Cements: Molecular and In Vitro Study. Appl. Sci. 2020, 10, 6713. https://doi.org/10.3390/app10196713
Pasqualini D, Comba A, Annaratone L, Mola V, Alovisi M, Breschi L, Mazzoni A, Scotti N, Cassoni P, Berutti E. Osteogenic Potential of Fast Set Bioceramic Cements: Molecular and In Vitro Study. Applied Sciences. 2020; 10(19):6713. https://doi.org/10.3390/app10196713
Chicago/Turabian StylePasqualini, Damiano, Allegra Comba, Laura Annaratone, Virginia Mola, Mario Alovisi, Lorenzo Breschi, Annalisa Mazzoni, Nicola Scotti, Paola Cassoni, and Elio Berutti. 2020. "Osteogenic Potential of Fast Set Bioceramic Cements: Molecular and In Vitro Study" Applied Sciences 10, no. 19: 6713. https://doi.org/10.3390/app10196713
APA StylePasqualini, D., Comba, A., Annaratone, L., Mola, V., Alovisi, M., Breschi, L., Mazzoni, A., Scotti, N., Cassoni, P., & Berutti, E. (2020). Osteogenic Potential of Fast Set Bioceramic Cements: Molecular and In Vitro Study. Applied Sciences, 10(19), 6713. https://doi.org/10.3390/app10196713