Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis)
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tumen, I.; Aydemir, D.; Gündüz, G.; Uner, B.; Cetin, H. Changes in the chemical structure of thermally treated wood. Bioresources 2010, 5, 1936–1944. [Google Scholar]
- Pétrissans, M.; Pétrissans, A.; Gérardin, P. Pore size diameter, shrinkage and specific gravity evolution during the heat treatment of wood. Innov. Woodwork. Ind. Eng. Des. 2013, 3, 18–24. [Google Scholar]
- Taghiyari, H.R.; Esmailpour, A.; Adamopoulos, S.; Zereshki, K.; Hosseinpourpia, R. Shear strength of heat-treated solid wood bonded with polyvinyl-acetate reinforced by nanowollastonite. Wood Res. 2020, 65, 183–194. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Boluk, Y. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources 2008, 3, 517–537. [Google Scholar]
- Candelier, K.; Thevenon, M.F.; Petrissans, A.; Dumarcay, S.; Gerardin, P.; Petrissans, A. Control of wood thermal and its effects on decay resistance: A review. Ann. For. Sci. 2016, 73, 571–583. [Google Scholar] [CrossRef]
- Yildiz, S.; Gezer, D.; Yildiz, U.C. Mechanical and chemical behavior of spruce wood modified by heat. Build. Environ. 2006, 41, 1762–1766. [Google Scholar] [CrossRef]
- Poncsak, S.; Kocaefe, D.; Bouazara, M.; Pichette, A. Effect of high temperature treatment on the mechanical properties of birch. Wood Sci. Technol. 2006, 40, 467–668. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Tjeerdsma, B. Chemical analysis of heat treated softwoods. Holz Roh Werkst. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Hiziroglu, S. Fundamental aspects of heat treated wood. Fact Sheet 2019, 2. Available online: www.fapc.biz (accessed on 3 August 2020).
- Dilik, T.; Hiziroglu, S. Bonding strength of heat treated compressed Eastern redcedar wood. Mater. Des. 2012, 42, 317–320. [Google Scholar] [CrossRef]
- Shi, J.L.; Kocaefe, D.; Zhang, J. Mechanical behaviour of Québec wood species heat-treated using ThermoWood process. Holz Roh Werkst. 2007, 65, 255–259. [Google Scholar] [CrossRef]
- Ozcan, S.; Ozcifci, A.; Hiziroglu, S.; Toker, H. Effects of heat treatment and surface roughness on bonding strength. Constr. Build. Mater. 2012, 33, 7–13. [Google Scholar] [CrossRef]
- Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar]
- Korkut, S.; Kök, M.S.; Korkut, D.S.; Gürleyen, T. The effects of heat treatment on technological properties in red-bud maple (Acer trautvetteri Medw.) wood. BioResources Technol. 2008, 99, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.A. Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci. Technol. 2000, 34, 39–43. [Google Scholar] [CrossRef]
- Hill, C. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons, Ltd.: Hoboken, NY, USA, 2006. [Google Scholar]
- Bakar, B.; Hiziroglu, S.; Tahir, P.M. Properties of some thermally modified wood.species. Mater. Des. 2013, 43, 348–355. [Google Scholar] [CrossRef]
- Ulker, O.; Aslanova, F.; Hiziroglu, S. Properties of thermally treated yellow poplar, Southern pine, and Eastern redcedar. BioResources 2018, 13, 7726–7737. [Google Scholar] [CrossRef]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Boonstra, M.J.; van Acker, J.; Tjeerdsma, B.; Kegal, E. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Tang, J.; Bouazara, M. Effect of heat treatment on the mechanical properties of North American Jack pine: Thermogravimetric study. J. Mater. Sci. 2009, 45, 681–687. [Google Scholar] [CrossRef]
- González-Peña, M.; Breese, M.; Hill, C. Hygroscopicity in heat-treated wood: Effect of extractives. In Proceedings of the International Conference on Environmentally Compatible Forest Products (ICECFOP), Oporto, Portugal, 22–24 September 2004; pp. 105–119. [Google Scholar]
- Torgovnikov, G.; Vinden, P. Microwave wood modification technology and its.applications. For. Prod. J. 2010, 60, 173–182. [Google Scholar]
- Torgovnikov, G.; Vinden, P. High-intensity microwave wood modification for increasing permeability. For. Prod. J. 2009, 59, 1–9. [Google Scholar]
- Harris, G.A.; Torgovnikov, G.; Vinden, P.; Brodie, G.I.; Shaginov, A. Microwave Pretreatment of Backsawn Messmate Boards to Improve Drying Quality: Part 1. Dry. Technol. 2008, 26, 579–584. [Google Scholar] [CrossRef]
- Ratnasingam, J.; Ioras, F. Effect of heat treatment on the machining and other properties of rubberwood. European. J. Wood Prod. 2012, 70, 759–761. [Google Scholar] [CrossRef]
- Teoh, Y.P.; Don, M.M.; Ujang, S. Assessment of the properties, utilization, and preservation of rubberwood (Hevea brasiliensis): A case study in Malaysia. J. Wood Sci. 2011, 57, 255–266. [Google Scholar] [CrossRef]
- ASTM D 143–14. Standard Test Methods for Small Clear Specimens of Timber; Street: Washington, DC, USA, 2010. [Google Scholar]
- Priadi, T.; Hiziroglu, S. Characterization of heat treated wood species. Mater. Des. 2013, 49, 575–582. [Google Scholar] [CrossRef]
- Chotikhun, A.; Hiziroglu, S. Measurement of dimensional stability of heat treated southern red oak (Quercus falcata Michx.). Measurement 2016, 87, 99–103. [Google Scholar] [CrossRef]
- Priadi, T.; Suharjo, A.C.; Karlinasari, L. Dimensional stability and color change of heat treated young teak wood. Int. Wood Prod. J. 2019, 10, 119–125. [Google Scholar] [CrossRef]
- Giebeler, E. Dimensional stability of wood through warm pressure treatment. Holz Roh Werkst. 1983, 41, 87–94. [Google Scholar] [CrossRef]
Temperature (°C) | Swelling in Water Soaking (%) | |||||
---|---|---|---|---|---|---|
2-h | 24-h | |||||
Radial | Tangential | Longitudinal | Radial | Tangential | Longitudinal | |
0 | 1.60 (0.38) | 1.86 (0.47) | 0.24 (0.07) | 2.67 (0.49) | 2.96 (0.56) | 0.44 (0.05) |
150 | 0.562 (0.23) | 0.988 (0.17) | 0.23 (0.05) | 2.25 (0.47) | 2.63 (0.48) | 0.43 (0.14) |
180 | 0.474 (0.16) | 0.878 (0.10) | 0.21 (0.02) | 1.62 (0.43) | 2.56 (0.32) | 0.43 (0.06) |
220 | 0.243 (0.21) | 0.472 (0.37) | 0.20 (0.03) | 1.49 (0.22) | 2.34 (0.60) | 0.42 (0.09) |
Temperature (°C) | Bending (N/mm2) | Hardness (N) | |
---|---|---|---|
MOE | MOR | ||
0 | 6280 (256.98) | 107.11 (24.21) | 5934 (583.12) |
150 | 5946 (517.33) | 91.26 (26.63) | 5320 (827.11) |
180 | 3820 (383.54) | 74.33 (21.55) | 3513 (889.13) |
220 | 2646 (854.24) | 28.93 (11.42) | 2506 (388.42) |
Temperature (°C) | Oven-Dry Density (kg/m3) | Weight Loss (%) | Water Absorption (%) | ||
---|---|---|---|---|---|
2-h | 24-h | ||||
0 | 648 (43) | - | 9.31 (1.22) | 26.92 (2.63) | |
150 | 613 (83) | 5.61 (3.42) | 8.89 (1.94) | 25.22 (6.32) | |
180 | 611 (31) | 8.32 (2.78) | 3.96 (1.89) | 20.00 (3.74) | |
220 | 556 (49) | 12.17 (4.91) | 3.73 (1.31) | 19.39 (3.25) |
Temperature (°C) | Color Parameters | ||
---|---|---|---|
L * | a * | b * | |
0 | 72.07 (1.28) | 5.65 (0.70) | 20.57 (1.10) |
150 | 75.29 (0.83) | 5.56 (1.01) | 20.53 (0.73) |
180 | 54.41 (1.23) | 8.32 (0.39) | 20.26 (0.40) |
220 | 48.88 (1.31) | 9.69 (0.51) | 20.80 (0.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chotikhun, A.; Kittijaruwattana, J.; Salca, E.-A.; Hiziroglu, S. Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis). Appl. Sci. 2020, 10, 6273. https://doi.org/10.3390/app10186273
Chotikhun A, Kittijaruwattana J, Salca E-A, Hiziroglu S. Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis). Applied Sciences. 2020; 10(18):6273. https://doi.org/10.3390/app10186273
Chicago/Turabian StyleChotikhun, Aujchariya, Jitralada Kittijaruwattana, Emilia-Adela Salca, and Salim Hiziroglu. 2020. "Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis)" Applied Sciences 10, no. 18: 6273. https://doi.org/10.3390/app10186273
APA StyleChotikhun, A., Kittijaruwattana, J., Salca, E.-A., & Hiziroglu, S. (2020). Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis). Applied Sciences, 10(18), 6273. https://doi.org/10.3390/app10186273