Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels
Abstract
1. Introduction
2. Antenna Design
3. Fabrication and Measurements
4. Link Reliability Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, P.; Ergen, S.C.; Fischione, C.; Lu, C.; Johansson, K.H. Wireless Network Design for Control Systems: A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 978–1013. [Google Scholar] [CrossRef]
- Ma, Z.; Xiao, M.; Xiao, Y.; Pang, Z.; Poor, H.V.; Vucetic, B. High-Reliability and Low-Latency Wireless Communication for Internet of Things: Challenges, Fundamentals, and Enabling Technologies. IEEE Internet Things J. 2019, 6, 7946–7970. [Google Scholar] [CrossRef]
- Luvisotto, M.; Pang, Z.; Dzung, D. High-Performance Wireless Networks for Industrial Control Applications: New Targets and Feasibility. Proc. IEEE 2019, 107, 1074–1093. [Google Scholar] [CrossRef]
- Park, P. Markov chain model of fault-tolerant wireless networked control systems. Wirel. Netw. 2019, 25, 2291–2303. [Google Scholar] [CrossRef]
- Tang, L.; Wang, K.; Huang, Y.; Gu, F. Channel Characterization and Link Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments. IEEE Trans. Ind. Inform. 2007, 3, 99–110. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Q.; Zhang, W.; Shen, F.; Loh, T.H.; Qin, F. Understanding the Temporal Fading in Wireless Industrial Networks: Measurements and Analyses. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–6. [Google Scholar]
- Alexandra, E.; Novotny, D.R.; Candell, R.; Koepke, G.H.; Papazian, P.B.; Remley, C.A. Fading due to static and dynamic features in a factory environment on wireless channels, NIST. IEEE Veh. Technol. Manag. 2018. Available online: https://pdfs.semanticscholar.org/6f5a/3f075837771342fa72e1ec977fdb24799247.pdf (accessed on 28 July 2020).
- Bombino, A.; Grimaldi, S.; Mahmood, A.; Gidlund, M. Machine Learning-Aided Classification Of LoS/NLoS Radio Links In Industrial IoT. In Proceedings of the 2020 16th IEEE International Conference on Factory Communication Systems (WFCS), Porto, Portugal, 27–29 April 2020; pp. 1–8. [Google Scholar]
- Liu, Z.-Y.; Guo, L.-X.; Li, C.-L. Effects of antenna polarization on power and RMS delay spread in LOS/OOS indoor radio channel. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar]
- Bou-El-Harmel, A.; Benbassou, A.; Belkadid, J.; Mechatte, N. Effect of Quasi-Isotropic Antenna Orientation on Indoor Multipath Propagation Characteristics in RSN Applications. Int. J. Antennas Propag. 2017, 2017, 2686123. [Google Scholar] [CrossRef]
- Brouwer, L.E.J. On Continuous Vector Distribution on Surfaces; 3rd communication; in KNAW, Proceedings, 13 I, 1910, Amsterdam; KNAW: Trippenhuis, Amsterdam, The Netherlands, 1910; pp. 171–186. [Google Scholar]
- Mathis, H.F. A short proof that an isotropic antenna is impossible. Proc. IRE 1951, 8, 970. [Google Scholar]
- Matzner, H.; Milgrom, M.; Shtrikman, S. A study of finite size power isotropic radiators. In Proceedings of the Eighteenth Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, Israel, 7–8 March 1995; pp. 1.4.1/1–1.4.1/5. [Google Scholar]
- Pan, Y.; Leung, K.W.; Lu, K. Compact Quasi-Isotropic Dielectric Resonator Antenna With Small Ground Plane. IEEE Trans. Antennas Propag. 2014, 62, 577–585. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, X.; Chen, W.; Feng, Z.; Iskander, M.F. Study of Conformal Switchable Antenna System on Cylindrical Surface for Isotropic Coverage. IEEE Trans. Antennas Propag. 2011, 59, 776–783. [Google Scholar] [CrossRef]
- Long, S. A combination of linear and slot antennas for quasi-isotropic coverage. IEEE Trans. Antennas Propag. 1975, 23, 572–576. [Google Scholar] [CrossRef]
- Kim, J.; Nam, S. A Compact Quasi-Isotropic Antenna Based on Folded Split-Ring Resonators. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 294–297. [Google Scholar] [CrossRef]
- Radha, S.M.; Shin, G.; Park, P.; Yoon, I.-J. Realization of Electrically Small, Low-Profile Quasi-Isotropic Antenna Using 3D Printing Technology. IEEE Access 2020, 8, 27067–27073. [Google Scholar] [CrossRef]
- Su, Z.; Klionovski, K.; Bilal, R.M.; Shamim, A. A Dual Band Additively Manufactured 3-D Antenna on Package With Near-Isotropic Radiation Pattern. IEEE Trans. Antennas Propag. 2018, 66, 3295–3305. [Google Scholar] [CrossRef]
- Ouyang, J.; Pan, Y.M.; Zheng, S.Y.; Hu, P.F. An Electrically Small Planar Quasi-Isotropic Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 303–306. [Google Scholar] [CrossRef]
- Deng, C.; Li, Y.; Zhang, Z.; Feng, Z. A Wideband Isotropic Radiated Planar Antenna Using Sequential Rotated L-Shaped Monopoles. IEEE Trans. Antennas Propag. 2014, 62, 1461–1464. [Google Scholar] [CrossRef]
- Pan, G.; Li, Y.; Zhang, Z.; Feng, Z. Isotropic Radiation From a Compact Planar Antenna Using Two Crossed Dipoles. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1338–1341. [Google Scholar]
- Imran Hussain Shah, S.; Tentzeris, M.M.; Lim, S. Planar quasi-isotropic antenna for drone communication. Microw. Opt. Technol. Lett. 2018, 60, 1290–1295. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Omar, A.A.; Hong, W. A Symmetrically-Stacked Planar Antenna Concept Exhibiting Quasi-Isotropic Radiation Coverage. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1390–1394. [Google Scholar] [CrossRef]
- Luo, J.W.; Pan, Y.M.; Zheng, S.Y.; Wang, S.H. A Planar Angled-Dipole Antenna With Quasi-Isotropic Radiation Pattern. IEEE Trans. Antennas Propag. 2020, 68, 5646–5651. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, M.; Chen, S.; Li, L.; Li, D.; Hu, K.; Li, M. Design of Low-Cost, Flexible, Uniplanar, Electrically Small, Quasi-Isotropic Antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1646–1650. [Google Scholar] [CrossRef]
- Ko, D.-O.; Woo, J.-M. Design of a Small Radio Frequency Identification Tag Antenna Using a Corrugated Meander Line Applicable to a Drug Runout Sensor System. J. Electromagn Eng. Sci. 2018, 18, 7–12. [Google Scholar] [CrossRef]
- Kedze, K.E.; Wang, H.; Park, I. Effects of Split Position on the Performance of a Compact Broadband Printed Dipole Antenna with Split-Ring Resonators. J. Electromagn Eng. Sci. 2019, 19, 115–121. [Google Scholar] [CrossRef]
- Lee, S.; Shin, G.; Radha, S.M.; Choi, J.; Yoon, I.-J. Low-Profile, Electrically Small Planar Huygens Source Antenna With an Endfire Radiation Characteristic. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 412–416. [Google Scholar] [CrossRef]
- Ta, S.X.; Park, I.; Ziolkowski, R.W. Crossed Dipole Antennas: A review. IEEE Antennas Propag. Mag. 2015, 57, 107–122. [Google Scholar] [CrossRef]
- Tang, M.; Wang, H.; Ziolkowski, R.W. Design and Testing of Simple, Electrically Small, Low-Profile, Huygens Source Antennas With Broadside Radiation Performance. IEEE Trans. Antennas Propag. 2016, 64, 4607–4617. [Google Scholar] [CrossRef]
- Zolertia RE-Mote Revision B Internet of Things Hardware Development Platform, for 2.4-GHz and 863-950MHz IEEE 802.15.4, 6LoWPAN and ZigBee Applications. Zolertia. Available online: https://github.com/Zolertia/Resources/wiki/Zolertia-Technical-documentation (accessed on 28 July 2020).
- Dunkels, A.; Gronvall, B.; Voigt, T. Contiki-a lightweight and flexible operating system for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004; pp. 455–462. [Google Scholar]
Parameter (mm) | h = 0.32 | h = 0.72 | h = 1.12 |
---|---|---|---|
Frequency (GHz) | 2.30 | 2.45 | 2.51 |
Gain deviation (dB) | 2.66 | 3.01 | 3.09 |
Radiation Efficiency (%) | 81.3 | 82.6 | 88.6 |
Parameter | Value | Parameter | Value |
---|---|---|---|
M1 | 8.4 | W3 | 2.4 |
M2 | 13.8 | W4 | 2 |
M3 | 12.1 | W5 | 3.15 |
M4 | 6.7 | r | 9.25 |
W1 | 2.2 | h | 0.72 |
W2 | 2 | α | 271.06º |
Reference | Frequency (GHz) | Height (λg) | ka | Gain Deviation (dB) |
---|---|---|---|---|
[14] | 2.465 | 0.116 | 1.05 | 5.6 |
[20] | 2.45 | 0.0063 | 0.73 | 3.14 |
[21] | 2.465 | 0.0065 | 1.63 | 5.75 |
[22] | 2.45 | 0.008 | 1.16 | 6.67 |
[23] | 2.01 | 0.024 | 2.73 | 12.9 |
[24] | 2.4 | 0.11 | 5.37 | 7.6 |
[25] | 2.4 | 0.016 | 1.28 | 2.6 |
This work | 2.47 | 0.006 | 0.47 | 5.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radha, S.M.; Jung, M.; Park, P.; Yoon, I.-J. Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels. Appl. Sci. 2020, 10, 6204. https://doi.org/10.3390/app10186204
Radha SM, Jung M, Park P, Yoon I-J. Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels. Applied Sciences. 2020; 10(18):6204. https://doi.org/10.3390/app10186204
Chicago/Turabian StyleRadha, Sonapreetha Mohan, Mingyu Jung, Pangun Park, and Ick-Jae Yoon. 2020. "Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels" Applied Sciences 10, no. 18: 6204. https://doi.org/10.3390/app10186204
APA StyleRadha, S. M., Jung, M., Park, P., & Yoon, I.-J. (2020). Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels. Applied Sciences, 10(18), 6204. https://doi.org/10.3390/app10186204