Fabrication and Characterization of Biplasmonic Substrates Obtained by Picosecond Laser Pulses
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amer, M.S.; Dosser, L.; LeClair, S.; Maguire, J.F. Induced stresses and structural changes in silicon wafers as a result of laser micro-machining. Appl. Surf. Sci. 2002, 187, 291–296. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Alan, C.; Patanjali, K. Chemical Society Reviews: Surface-enhanced Raman Scattering. Phys. Today 1998, 27, 241–250. [Google Scholar]
- Srinoi, P.; Chen, Y.-T.; Vittur, V.; Marquez, M.; Lee, T.; Srinoi, P.; Chen, Y.-T.; Vittur, V.; Marquez, M.D.; Lee, T.R. Bimetallic Nanoparticles: Enhanced Magnetic and Optical Properties for Emerging Biological Applications. Appl. Sci. 2018, 8, 1106. [Google Scholar] [CrossRef]
- Keren, S.; Zavaleta, C.; Cheng, Z.; De La Zerda, A.; Gheysens, O.; Gambhir, S.S.; Phelps, M.E. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 5844–5849. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Gong, T.; Kong, W.; Yue, W.; Chen, W.; Xie, Z.; Su, Y.; Li, L. Large-scale diamond silver nanoparticle arrays as uniform and sensitive SERS substrates fabricated by surface plasmon lithography technology. Opt. Commun. 2019, 444, 56–62. [Google Scholar] [CrossRef]
- Kosuda, K.M.; Bingham, J.M.; Wustholz, K.L.; Van Duyne, R.P. Nanostructures and Surface-Enhanced Raman Spectroscopy. In Comprehensive Nanoscience and Technology; Elsevier: Evanston, IL, USA; Northwestern University: Evanston, IL, USA, 2010; Volume 1, ISBN 9780123743909. [Google Scholar]
- Šubr, M.; Petr, M.; Kylián, O.; Štěpánek, J.; Veis, M.; Procházka, M. Anisotropic Optical Response of Silver Nanorod Arrays: Surface Enhanced Raman Scattering Polarization and Angular Dependences Confronted with Ellipsometric Parameters. Sci. Rep. 2017, 7, 4293. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Q.; Hu, J. Fabrication and characterization of highly ordered Au nanocone array-patterned glass with enhanced SERS and hydrophobicity. Appl. Surf. Sci. 2015, 356, 364–369. [Google Scholar] [CrossRef]
- Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P.M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923–1928. [Google Scholar] [CrossRef]
- Schmidl, G.; Jia, G.; Gawlik, A.; Kreusch, J.; Schmidl, F.; Dellith, J.; Dathe, A.; Lin, Z.H.; Huang, J.S.; Plentz, J. Fabrication of self-assembled spherical Gold Particles by pulsed UV Laser Treatment. Sci. Rep. 2018, 8, 11283. [Google Scholar] [CrossRef]
- Gkogkou, D.; Schreiber, B.; Shaykhutdinov, T.; Ly, H.K.; Kuhlmann, U.; Gernert, U.; Facsko, S.; Hildebrandt, P.; Esser, N.; Hinrichs, K.; et al. Polarization- and Wavelength-Dependent Surface-Enhanced Raman Spectroscopy Using Optically Anisotropic Rippled Substrates for Sensing. ACS Sens. 2016, 1, 318–323. [Google Scholar] [CrossRef]
- Abu Hatab, N.A.; Oran, J.M.; Sepaniak, M.J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2008, 2, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Byram, C.; Moram, S.S.B.; Soma, V.R. Surface-enhanced Raman scattering studies of gold-coated ripple-like nanostructures on iron substrate achieved by femtosecond laser irradiation in water. J. Raman Spectrosc. 2019, 50, 1103–1113. [Google Scholar] [CrossRef]
- Byram, C.; Moram, S.S.B.; Soma, V.R. SERS based detection of multiple analytes from dye/explosive mixtures using picosecond laser fabricated gold nanoparticles and nanostructures. Analyst 2019, 144, 2327–2336. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, J.; Jiao, L.; Guan, Y. Large-scale fabrication of nanostructure on bio-metallic substrate for surface enhanced raman and fluorescence scattering. Nanomaterials 2019, 9, 916. [Google Scholar] [CrossRef]
- Buividas, R.; Stoddart, P.R.; Juodkazis, S. Laser fabricated ripple substrates for surface-enhanced Raman scattering. Ann. Phys. 2012, 524, L5–L10. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, F.; Cheng, Y.; Xu, N.; Xu, Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 2009, 3, 4062–4070. [Google Scholar] [CrossRef]
- Ranno, L.; Forno, S.D.; Lischner, J. Computational design of bimetallic core-shell nanoparticles for hot-carrier photocatalysis. NPJ Comput. Mater. 2018, 4, 31. [Google Scholar] [CrossRef]
- Domke, M.; Nobile, L.; Rapp, S.; Eiselen, S.; Sotrop, J.; Huber, H.P.; Schmidt, M. Understanding thin film laser ablation: The role of the effective penetration depth and the film thickness. Phys. Procedia 2014, 56, 1007–1014. [Google Scholar] [CrossRef]
- Li, W.-H.; Li, X.-Y.; Yu, N.-T. Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: A comparison study. Chem. Phys. Lett. 1999, 312, 28–36. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Mo, Y.; Huang, X.; Chen, L. Surface enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on silver electrode in lithium batteries. Chem. Phys. Lett. 2000, 330, 249–254. [Google Scholar] [CrossRef]
- Baia, M.; Baia, L.; Astilean, S. Gold nanostructured films deposited on polystyrene colloidal crystal templates for surface-enhanced Raman spectroscopy. Chem. Phys. Lett. 2005, 404, 3–8. [Google Scholar] [CrossRef]
- Watanabe, H.; Hayazawa, N.; Inouye, Y.; Kawata, S. DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. B 2005, 109, 5012–5020. [Google Scholar] [CrossRef] [PubMed]
- Soejima, T.; Ohkubo, Y. Baseline Setting Method. Japan Patent 4966337B2, 4 July 2012. [Google Scholar]
- Silmeco—SERS Substrates. Available online: https://shop.silmeco.com/ (accessed on 21 March 2019).
- Schmidt, M.S.; Hübner, J.; Boisen, A. Large area fabrication of leaning silicon nanopillars for Surface Enhanced Raman Spectroscopy. Adv. Mater. 2012, 24, 11–18. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stochioiu, A.; Luculescu, C.; Paun, I.A.; Jinga, L.-I.; Stochioiu, C. Fabrication and Characterization of Biplasmonic Substrates Obtained by Picosecond Laser Pulses. Appl. Sci. 2020, 10, 5938. https://doi.org/10.3390/app10175938
Stochioiu A, Luculescu C, Paun IA, Jinga L-I, Stochioiu C. Fabrication and Characterization of Biplasmonic Substrates Obtained by Picosecond Laser Pulses. Applied Sciences. 2020; 10(17):5938. https://doi.org/10.3390/app10175938
Chicago/Turabian StyleStochioiu, Andrei, Catalin Luculescu, Irina Alexandra Paun, Luiza-Izabela Jinga, and Constantin Stochioiu. 2020. "Fabrication and Characterization of Biplasmonic Substrates Obtained by Picosecond Laser Pulses" Applied Sciences 10, no. 17: 5938. https://doi.org/10.3390/app10175938
APA StyleStochioiu, A., Luculescu, C., Paun, I. A., Jinga, L.-I., & Stochioiu, C. (2020). Fabrication and Characterization of Biplasmonic Substrates Obtained by Picosecond Laser Pulses. Applied Sciences, 10(17), 5938. https://doi.org/10.3390/app10175938