Application of Active Packaging in Refrigerated Rainbow Trout (Oncorhynchus mykiss) Fillets Treated with UV-C Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Oxygen Scavenger Packaging
2.3. UV-C Treatment
2.4. Determination of Lipid Oxidation
2.5. Determination of Protein Oxidation
2.6. Instrumental Color Measurements
2.7. Instrumental Texture Profile
2.8. Statistical Analyses
3. Results and Discussion
3.1. Lipid Oxidation
3.2. Protein Oxidation
3.3. Instrumental Color Parameters
3.4. Instrumental Texture Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture—Meeting the Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Antão-Geraldes, A.M.; Hungulo, S.R.; Pereira, E.; Teixeira, A.; Teixeira, A.; Rodrigues, S. Body composition and sensory quality of wild and farmed brown-trout (Salmo trutta) and of farmed rainbow-trout (Oncorhynchus mykiss). Ciência Rural 2018, 48, e20180190. [Google Scholar] [CrossRef]
- Richards, M.P.; Nelson, N.M.; Kristinsson, H.G.; Mony, S.S.J.; Petty, H.T.; Oliveira, A.C.M. Effects of fish heme protein structure and lipid substrate composition on hemoglobin-mediated lipid oxidation. J. Agric. Food Chem. 2007, 55, 3643–3654. [Google Scholar] [CrossRef] [PubMed]
- USDA-US. Department of Agriculture. National Nutrient Database. Available online: https://ndb.nal.usda.gov/ndb (accessed on 15 July 2020).
- Cunha, L.C.M.; Monteiro, M.L.G.; Lorenzo, J.M.; Munekata, P.E.S.; Muchenje, V.; Carvalho, F.A.L.; Conte-Junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef]
- Mexis, S.F.; Chouliara, E.; Kontominas, M.G. Combined effect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fillets stored at 4 °C. Food Microbiol. 2009, 26, 598–605. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Mársico, E.T.; Rosenthal, A.; Conte-Junior, C.A. Synergistic effect of ultraviolet radiation and high hydrostatic pressure on texture, color, and oxidative stability of refrigerated tilapia fillets. J. Sci. Food Agric. 2019, 99, 4474–4481. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Mársico, E.T.; Mutz, Y.S.; Castro, V.S.; Moreira, R.V.B.P.; Álvares, T.S.; Conte, C.A., Jr. Combined effect of oxygen scavenger packaging and UV-C radiation on shelf life of refrigerated tilapia (Oreochromis niloticus) fillets. Sci. Rep. 2020, 10, e4243. [Google Scholar] [CrossRef] [Green Version]
- Remya, S.; Mohan, C.O.; Venkateshwarlu, G.; Sivaraman, G.K.; Ravishankar, C.N. Combined effect of O2 scavenger and antimicrobial film on shelf life of (Rachycentron canadum) fish steaks stored at 2 °C. Food Control 2017, 71, 71–78. [Google Scholar] [CrossRef]
- Koutchma, T. Principles and applications of UV light technology. In Ultraviolet Light in Food Technology: Principles and Applications, 2nd ed.; Koutchma, T., Ed.; CRC Press: New York, NY, USA, 2019; pp. 1–48. [Google Scholar]
- Rodrigues, B.L.; Alvares, T.S.; Sampaio, G.S.L.; Cabral, C.C.; Araujo, J.V.A.; Franco, R.M.; Mano, S.B.; Conte Junior, C.A. Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control 2016, 60, 596–605. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, M.L.G.; Mársico, E.T.; Canto, A.C.V.C.S.; Costa-Lima, B.R.C.; Costa, M.P.; Viana, F.M.; Silva, T.J.P.; Conte-Junior, C.A. Impact of UV-C light on the fatty acid profile and oxidative stability of Nile tilapia (Oreochromis niloticus) fillets. J. Food Sci. 2017, 82, 1028–1036. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Mársico, E.T.; Mano, S.B.; Alvares, T.S.; Rosenthal, A.; Lemos, M.; Ferrari, E.; Lázaro, C.A.; Conte-Junior, C.A. Combined effect of high hydrostatic pressure and ultraviolet radiation on quality parameters of refrigerated vacuum-packed tilapia (Oreochromis niloticus) fillets. Sci. Rep. 2018, 8, e9524. [Google Scholar] [CrossRef] [PubMed]
- Bottino, F.O.; Rodrigues, B.L.; Ribeiro, J.D.N.; Lazaro, C.A.; Conte-Junior, C.A. Influence of UV-C radiation on shelf life of vacuum package tambacu (Colossoma macropomum x Piaractus mesopotamicus) fillets. J. Food Process. Preserv. 2017, 41, e13003. [Google Scholar] [CrossRef]
- Molina, B.; Sáez, M.I.; Martínez, T.F.; Guil-Guerrero, J.L.; Suárez, M.D. Effect of ultraviolet light treatment on microbial contamination, some textural and organoleptic parameters of cultured sea bass fillets (Dicentrarchus labrax). Innov. Food Sci. Emerg. Technol. 2014, 26, 205–213. [Google Scholar] [CrossRef]
- Ahmed, I.; Lin, H.; Zhou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.R.; Lv, L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Suppakul, P. Active and intelligent packaging: The indication of quality and safety. Crit. Rev. Food Sci. Nutr. 2018, 58, 808–831. [Google Scholar] [CrossRef]
- Mohan, C.O.; Abin, J.; Kishore, P.; Panda, S.K.; Ravishankar, C.N. Effect of vacuum and active packaging on the biochemical and microbial quality of Indian oil sardine (Sardinella longiceps) during iced storage. J. Packag. Technol. Res. 2019, 3, 43–55. [Google Scholar] [CrossRef]
- Lázaro, C.A.; Conte-Júnior, C.A.; Monteiro, M.L.G.; Canto, A.C.V.S.; Costa-Lima, B.R.C.; Mano, S.B.; Franco, R.M. Effects of ultraviolet light on biogenic amines and other quality indicators of chicken meat during refrigerated storage. Poultry Sci. 2014, 93, 2304–2313. [Google Scholar] [CrossRef]
- Yin, M.C.; Faustman, C.; Riesen, J.W.; Williams, S.N. α-Tocopherol and ascorbate delay oxymyoglobin and phospholipid oxidation in vitro. J. Food Sci. 1993, 58, 1273–1276. [Google Scholar] [CrossRef]
- Joseph, P.; Suman, S.P.; Rentfrow, G.; Li, S.; Beach, C.M. Proteomics of muscle-specific beef color stability. J. Agric. Food Chem. 2012, 60, 3196–3203. [Google Scholar] [CrossRef]
- Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar]
- Mercier, Y.; Gatellier, P.; Viau, M.; Remignon, H.; Renerre, M. Effect of dietary fat and vitamin E on colour stability and on lipid and protein oxidation in turkey meat during storage. Meat Sci. 1998, 48, 301–318. [Google Scholar] [CrossRef]
- Armenteros, M.; Heinonen, M.; Ollilainen, V.; Toldra, F.; Estevez, M. Analysis of protein carbonyls in meat products by using the DNPH-method, fluorescence spectroscopy and liquid chromatography-electrospray ionization-mass spectrometry (LC–ESI–MS). Meat Sci. 2009, 83, 104–112. [Google Scholar] [CrossRef] [PubMed]
- American Meat Science Association (AMSA). Meat Color Measurement Guidelines, 2nd ed.; AMSA: Champaign, IL, USA, 2012. [Google Scholar]
- Sun, T.; Hao, W.; Li, J.; Dong, Z.; Wu, C. Preservation properties of in situ modified CaCO3–chitosan composite coatings. Food Chem. 2015, 183, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; He, Z.; Emara, A.M.; Gan, X.; Li, H. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chem. 2019, 288, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Sáez, M.I.; Suárez, M.D.; Martínez, T.F. Effects of alginate coating enriched with tannins on shelf life of cultured rainbow trout (Oncorhynchus mykiss) fillets. LWT Food Sci. Technol. 2020, 118, 108767. [Google Scholar] [CrossRef]
- Mohan, C.O.; Ravishankar, C.N.; Gopal, T.K.S.; Kumar, K.A. Nucleotide breakdown products of seer fish (Scomberomorus commerson) steaks stored in O2 scavenger packs during chilled storage. Innov. Food Sci. Emerg. Technol. 2009, 10, 272–278. [Google Scholar] [CrossRef]
- Solanki, J.B.; Zofair, S.M.; Remya, S.; Dodia, A.R. Effect of active and vacuum packaging on the quality of dried sardine (Sardinella longiceps) during storage. J. Entomol. Zool. Stud. 2019, 7, 766–771. [Google Scholar]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef]
- Mozaffarzogh, M.; Misaghi, A.; Shahbazi, Y.; Kamkar, A. Evaluation of probiotic carboxymethyl cellulose-sodium caseinate films and their application in extending shelf life quality of fresh trout fillets. LWT Food Sci. Technol. 2020, 126, 109305. [Google Scholar] [CrossRef]
- Zhaleh, S.; Shahbazi, Y.; Shavisi, N. Shelf-life enhancement in fresh and frozen rainbow trout fillets by the employment of a novel active coating design. J. Food Sci. 2019, 84, 3691–3699. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.P.; Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Yang, Y.; Tang, X.; Chen, Y.; You, Y. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chem. 2015, 188, 111–118. [Google Scholar] [CrossRef]
- Santos, J.S.L.; Mársico, E.T.; Lemos, M.; Cinquini, M.A.; Silva, F.A.; Dutra, Y.B.; Franco, R.M.; Conte, C.A., Jr.; Monteiro, M.L.G. Effect of the UV-C radiation on shelf life of vacuum-packed refrigerated pirarucu (Arapaima gigas) fillets. J. Aquat. Food Prod. Technol. 2018, 27, 48–60. [Google Scholar] [CrossRef]
- Wu, W.; Gao, X.G.; Dai, Y.; Fu, Y.; Li, X.M.; Dai, R.T. Post-mortem changes in sarcoplasmic proteome and its relationship to meat color traits in M. semitendinosus of Chinese Luxiyellow cattle. Food Res. Int. 2015, 72, 98–105. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Combined Effect of ethanolic coconut husk extract and modified atmospheric packaging (MAP) in extending the shelf life of Asian sea bass slices. J. Aquat. Food Prod. Technol. 2019, 28, 689–702. [Google Scholar] [CrossRef]
- Pedrós-Garrido, S.; Condón-Abanto, S.; Clemente, I.; Beltrán, J.A.; Lyng, J.G.; Bolton, D.; Brunton, N.; Whyte, P. Efficacy of ultraviolet light (UV-C) and pulsed light (PL) for the microbiological decontamination of raw salmon (Salmo salar) and food contact surface materials. Innov. Food Sci. Emerg. Technol. 2018, 50, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Park, S.Y.; Ha, S. Application of combined UV-C light and ethanol treatment for the reduction of pathogenic Escherichia coli and Bacillus cereus on Gwamegi (semi dried Pacific saury). J. Food Saf. 2019, 39, e12712. [Google Scholar] [CrossRef]
- Cruz-Romero, M.; Kelly, A.L.; Kerry, J.P. Effects of high-pressure and heat treatments on physical and biochemical characteristic of oysters (Crassostrea gigas). Innov. Food Sci. Emerg. Technol. 2007, 8, 30–38. [Google Scholar] [CrossRef]
- Francis, F.J. Colorimetry of foods. In Physical Properties of Foods, 1st ed.; Peleg, M., Bagley, E.B., Eds.; AVI Publishing: Wesport, CT, USA, 1983; pp. 105–124. [Google Scholar]
- Rodrigues, B.L.; Costa, M.P.; Frasão, B.S.; Silva, F.A.; Mársico, E.T.; Alvares, T.S.; Conte-Junior, C.A. Instrumental texture parameters as freshness indicators in five farmed Brazilian freshwater fish species. Food Anal. Method. 2017, 10, 3589–3599. [Google Scholar] [CrossRef]
- Li, B.; Xu, Y.; Li, J.; Niu, S.; Wang, C.; Zhang, N.; Yang, M.; Zhou, K.; Chen, S.; He, L.; et al. Effect of oxidized lipids stored under different temperatures on muscle protein oxidation in Sichuan-style sausages during ripening. Meat Sci. 2019, 147, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Teoh, L.S.; Lasekan, O.; Adzahan, N.M.; Hashim, N. The effect of ultraviolet treatment on enzymatic activity and total phenolic content of minimally processed potato slices. J. Food Sci. Technol. 2016, 53, 3035–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments | Code | Description ¥ |
---|---|---|
Air packaging | AP | The fillet was placed in the package, which was immediately sealed |
Oxygen-scavenger packaging | OSP | The fillet was placed in the package, one oxygen absorber was inserted, and then it was immediately sealed |
Air packaging + UV-C | AUV1 | Packed fillet (AP) was submitted to UV-C at 0.102 J/cm2 |
Oxygen-scavenger packaging + UV-C | OSUV1 | Packed fillet (OSP) was submitted to UV-C at 0.102 J/cm2 |
Air packaging + UV-C | AUV3 | Packed fillet (AP) was submitted to UV-C at 0.301 J/cm2 |
Oxygen-scavenger packaging + UV-C | OSUV3 | Packed fillet (OSP) was submitted to UV-C at 0.301 J/cm2 |
Parameters | Treatments € | Days of Storage | |||
---|---|---|---|---|---|
0 | 3 | 6 | 9 | ||
Lipid oxidation (mg MDA ¥/kg fish) | AP | 0.117 ± 0.010 az | 0.429 ± 0.038 cy | 0.662 ± 0.045 cx | 0.991 ± 0.069 cw |
OSP | 0.121 ± 0.010 az | 0.224 ± 0.017 dy | 0.479 ± 0.035 dx | 0.757 ± 0.061 dw | |
AUV1 | 0.120 ± 0.011 az | 0.542 ± 0.051 by | 0.758 ± 0.059 bx | 1.157 ± 0.072 bw | |
OSUV1 | 0.122 ± 0.012 az | 0.227 ± 0.015 dy | 0.476 ± 0.037 dx | 0.759 ± 0.069 dw | |
AUV3 | 0.117 ± 0.011 az | 0.671 ± 0.059 ay | 0.873 ± 0.070 ax | 1.343 ± 0.079 aw | |
OSUV3 | 0.120 ± 0.011 az | 0.231 ± 0.021 dy | 0.484 ± 0.044 dx | 0.774 ± 0.047 dw | |
Protein oxidation (nmol carbonyl/mg protein) | AP | 1.33 ± 0.17 az | 2.48 ± 0.23 cy | 3.46 ± 0.31 cx | 4.42 ± 0.30 cw |
OSP | 1.30 ± 0.15 az | 1.88 ± 0.19 dy | 2.67 ± 0.21 dx | 3.58 ± 0.36 dw | |
AUV1 | 1.33 ± 0.15 az | 2.70 ± 0.26 by | 4.08 ± 0.39 bx | 4.79 ± 0.43 bw | |
OSUV1 | 1.33 ± 0.08 az | 1.84 ± 0.19 dy | 2.60 ± 0.26 dx | 2.53 ± 0.34 dw | |
AUV3 | 1.35 ± 0.14 az | 3.34 ± 0.24 ay | 4.62 ± 0.28 ax | 5.16 ± 0.24 aw | |
OSUV3 | 1.36 ± 0.12 az | 1.90 ± 0.14 dy | 2.66 ± 0.24 dx | 3.54 ± 0.33 dw |
Parameters | Treatments € | Days of Storage | |||
---|---|---|---|---|---|
0 | 3 | 6 | 9 | ||
L* | AP | 53.51 ± 0.98 ay | 57.65 ± 1.86 ax | 59.48 ± 2.20 ax | 65.45 ± 2.67 aw |
OSP | 54.00 ± 1.95 ay | 57.83 ± 1.86 ax | 59.21 ± 2.36 ax | 64.77 ± 2.38 aw | |
AUV1 | 53.83 ± 2.12 ay | 58.05 ± 1.52 ax | 59.47 ± 2.39 ax | 65.01 ± 2.79 aw | |
OSUV1 | 53.61 ± 1.90 ay | 57.09 ± 2.04 ax | 59.09 ± 1.81 ax | 64.38 ± 2.14 aw | |
AUV3 | 53.45 ± 2.59 ay | 58.11 ± 2.02 ax | 60.07 ± 1.31 ax | 65.35 ± 2.59 aw | |
OSUV3 | 53.37 ± 1.89 ay | 57.20 ± 1.90 ax | 59.27 ± 1.90 ax | 64.52 ± 2.63 aw | |
a* | AP | 5.09 ± 0.25 aw | 4.05 ± 0.29 bx | 3.34 ± 0.30 by | 2.66 ± 0.19 bz |
OSP | 5.21 ± 0.13 aw | 4.76 ± 0.15 ax | 4.29 ± 0.22 ay | 3.70 ± 0.15 az | |
AUV1 | 5.11 ± 0.25 aw | 3.62 ± 0.17 cx | 2.67 ± 0.24 cy | 2.16 ± 0.13 cz | |
OSUV1 | 5.26 ± 0.25 aw | 4.80 ± 0.13 ax | 4.32 ± 0.26 ay | 3.65 ± 0.18 az | |
AUV3 | 5.10 ± 0.28 aw | 3.02 ± 0.21 dx | 2.07 ± 0.15 dy | 1.67 ± 0.09 dz | |
OSUV3 | 5.29 ± 0.29 aw | 4.79 ± 0.17 ax | 4.23 ± 0.27 ay | 3.68 ± 0.21 az | |
b* | AP | 7.02 ± 0.57 az | 8.84 ± 0.45 cy | 9.74 ± 0.48 cx | 10.96 ± 0.57 cw |
OSP | 7.04 ± 0.58 ay | 8.15 ± 0.41 dx | 8.82 ± 0.34 dw | 9.34 ± 0.33 dw | |
AUV1 | 7.08 ± 0.61 az | 9.87 ± 0.31 by | 10.46 ± 0.42 bx | 11.72 ± 0.44 bw | |
OSUV1 | 7.06 ± 0.50 ay | 8.29 ± 0.44 dx | 8.88 ± 0.19 dw | 9.38 ± 0.31 dw | |
AUV3 | 7.18 ± 0.64 az | 10.76 ± 0.43 ay | 11.50 ± 0.43 ax | 12.33 ± 0.53 aw | |
OSUV3 | 7.11 ± 0.50 ay | 8.26 ± 0.46 dx | 8.76 ± 0.48 dx | 9.40 ± 0.39 dw | |
Total color difference ¥ | |||||
ΔE9-0 | AP | 11.88 ± 0.79 c | |||
OSP | 10.70 ± 0.74 d | ||||
AUV1 | 13.71 ± 0.97 b | ||||
OSUV1 | 10.47 ± 0.28 d | ||||
AUV3 | 16.25 ± 1.18 a | ||||
OSUV3 | 10.64 ± 0.68 d |
Parameters | Treatments € | Days of Storage | |||
---|---|---|---|---|---|
0 | 3 | 6 | 9 | ||
Hardness (N) | AP | 21.08 ± 1.85 aw | 15.55 ± 1.44 bx | 12.16 ± 0.89 by | 10.32 ± 0.82 bz |
OSP | 20.98 ± 2.00 aw | 18.23 ± 1.47 ax | 15.51 ± 1.35 ay | 12.79 ± 1.20 az | |
AUV1 | 21.13 ± 2.07 aw | 12.88 ± 0.94 cx | 10.08 ± 0.71 cy | 7.86 ± 0.58 cz | |
OSUV1 | 20.64 ± 1.61 aw | 18.57 ± 1.30 ax | 14.73 ± 1.28 ay | 12.70 ± 1.11 az | |
AUV3 | 21.14 ± 2.06 aw | 10.31 ± 1.02 dx | 8.09 ± 0.71 dy | 7.06 ± 0.49 cy | |
OPUV3 | 20.79 ± 1.70 aw | 18.52 ± 1.10 ax | 15.04 ± 1.12 ay | 12.77 ± 1.15 az | |
Chewiness (N × mm) | AP | 5.80 ± 0.45 aw | 4.03 ± 0.35 bx | 3.45 ± 0.33 by | 2.85 ± 0.22 bz |
OSP | 5.78 ± 0.52 aw | 4.76 ± 0.32 ax | 4.00 ± 0.32 ay | 3.44 ± 0.31 az | |
AUV1 | 5.73 ± 0.40 aw | 3.43 ± 0.29 cx | 2.75 ± 0.23 cy | 2.07 ± 0.15 cz | |
OSUV1 | 5.81 ± 0.35 aw | 4.79 ± 0.41 ax | 3.96 ± 0.34 ay | 3.43 ± 0.29 az | |
AUV3 | 5.83 ± 0.52 aw | 2.81 ± 0.19 dx | 2.17 ± 0.16 dy | 1.76 ± 0.16 cz | |
OPUV3 | 5.84 ± 0.44 aw | 4.73 ± 0.46 ax | 3.97 ± 0.26 ay | 3.40 ± 0.31 az | |
Cohesiveness (ratio) | AP | 0.330 ± 0.028 aw | 0.339 ± 0.030 aw | 0.337 ± 0.031 aw | 0.342 ± 0.033 aw |
OSP | 0.336 ± 0.028 aw | 0.338 ± 0.029 aw | 0.339 ± 0.029 aw | 0.345 ± 0.027 aw | |
AUV1 | 0.343 ± 0.029 aw | 0.345 ± 0.033 aw | 0.344 ± 0.033 aw | 0.338 ± 0.028 aw | |
OSUV1 | 0.343 ± 0.027 aw | 0.345 ± 0.029 aw | 0.342 ± 0.029 aw | 0.337 ± 0.029 aw | |
AUV3 | 0.337 ± 0.033 aw | 0.340 ± 0.024 aw | 0.339 ± 0.031 aw | 0.342 ± 0.029 aw | |
OPUV3 | 0.330 ± 0.031 aw | 0.337 ± 0.030 aw | 0.338 ± 0.028 aw | 0.340 ± 0.030 aw | |
Springiness (ratio) | AP | 0.532 ± 0.046 aw | 0.542 ± 0.045 aw | 0.549 ± 0.045 aw | 0.541 ± 0.049 aw |
OSP | 0.541 ± 0.049 aw | 0.543 ± 0.045 aw | 0.544 ± 0.040 aw | 0.542 ± 0.040 aw | |
AUV1 | 0.531 ± 0.049 aw | 0.546 ± 0.050 aw | 0.543 ± 0.044 aw | 0.546 ± 0.042 aw | |
OSUV1 | 0.539 ± 0.035 aw | 0.544 ± 0.036 aw | 0.549 ± 0.053 aw | 0.547 ± 0.045 aw | |
AUV3 | 0.539 ± 0.048 aw | 0.544 ± 0.042 aw | 0.550 ± 0.045 aw | 0.545 ± 0.044 aw | |
OPUV3 | 0.546 ± 0.042 aw | 0.548 ± 0.033 aw | 0.542 ± 0.045 aw | 0.544 ± 0.046 aw | |
Resilience (ratio) | AP | 0.124 ± 0.012 aw | 0.119 ± 0.012 aw | 0.123 ± 0.012 aw | 0.118± 0.010 aw |
OSP | 0.121 ± 0.011 aw | 0.125 ± 0.012 aw | 0.120 ± 0.011 aw | 0.119 ± 0.010 aw | |
AUV1 | 0.121 ±0.012 aw | 0.124 ± 0.012 aw | 0.120 ± 0.010 aw | 0.121 ± 0.012 aw | |
OSUV1 | 0.122 ± 0.012 aw | 0.125 ± 0.010 aw | 0.120 ± 0.010 aw | 0.123 ± 0.010 aw | |
AUV3 | 0.123 ± 0.010 aw | 0.121 ± 0.012 aw | 0.123 ± 0.012 aw | 0.120 ± 0.009 aw | |
OPUV3 | 0.121 ± 0.011 aw | 0.123 ± 0.010 aw | 0.122 ± 0.011 aw | 0.121 ± 0.012 aw |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, M.L.G.; Mársico, E.T.; Conte-Junior, C.A. Application of Active Packaging in Refrigerated Rainbow Trout (Oncorhynchus mykiss) Fillets Treated with UV-C Radiation. Appl. Sci. 2020, 10, 5787. https://doi.org/10.3390/app10175787
Monteiro MLG, Mársico ET, Conte-Junior CA. Application of Active Packaging in Refrigerated Rainbow Trout (Oncorhynchus mykiss) Fillets Treated with UV-C Radiation. Applied Sciences. 2020; 10(17):5787. https://doi.org/10.3390/app10175787
Chicago/Turabian StyleMonteiro, Maria Lúcia G., Eliane T. Mársico, and Carlos A. Conte-Junior. 2020. "Application of Active Packaging in Refrigerated Rainbow Trout (Oncorhynchus mykiss) Fillets Treated with UV-C Radiation" Applied Sciences 10, no. 17: 5787. https://doi.org/10.3390/app10175787
APA StyleMonteiro, M. L. G., Mársico, E. T., & Conte-Junior, C. A. (2020). Application of Active Packaging in Refrigerated Rainbow Trout (Oncorhynchus mykiss) Fillets Treated with UV-C Radiation. Applied Sciences, 10(17), 5787. https://doi.org/10.3390/app10175787