Experimental Characterization of Prefabricated Bridge Deck Panels Prepared with Prestressed and Sustainable Ultra-High Performance Concrete
Abstract
:1. Introduction
2. Experimental Work
3. Sectional Analyses
4. Results and Discussion
4.1. Summary of the Load Demand and Capacity
4.2. Prestressed HSC/HSFRC Deck Panels
4.3. Sustainable UHPC-NA/RA Deck Panels
5. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keller, T.; Rothe, J.; Castro, J.; de Osei-Antwi, M. GFRP-Balsa Sandwich Bridge Deck: Concept, Design, and Experimental Validation. J. Compos. Constr. 2014, 18, 04013043. [Google Scholar] [CrossRef]
- Manalo, A.; Aravinthan, T.; Fam, A.; Benmokrane, B. State-of-the-Art Review on FRP Sandwich Systems for Lightweight Civil Infrastructure. J. Compos. Constr. 2017, 21, 04016068. [Google Scholar] [CrossRef] [Green Version]
- Al-Ramahee, M.; Chan, T.; Mackie, K.R.; Ghasemi, S.; Mirmiran, A. Lightweight UHPC-FRP Composite Deck System. J. Bridg. Eng. 2017, 22, 04017022. [Google Scholar] [CrossRef]
- Federal Highway Administration, U.S.; Department of Transportation. FHWA: Tables of Frequently Requested NBI Data [Internet]. 2017. Available online: http://www.fhwa.dot.gov/bridge/britab.htm (accessed on 5 February 2020).
- Saleem, M.A.; Mirmiran, A.; Xia, J.; Mackie, K.R. Ultra-High-Performance Concrete Bridge Deck Reinforced with High-Strength Steel. ACI Struct. J. 2011, 108. [Google Scholar] [CrossRef]
- Ghasemi, S.; Mirmiran, A.; Xiao, Y.; Mackie, K.R. Novel UHPC-CFRP Waffle Deck Panel System for Accelerated Bridge Construction. J. Compos. Constr. 2016, 20, 04015042. [Google Scholar] [CrossRef]
- Keierleber, B.; Bierwagen, D.; Wipf, T.; Abu-Hawash, A. Design Of Buchanan County, Iowa, Bridge, Using Ultra High-Performance Concrete And Pi Beam Cross Section. In Proceedings of the Mid-Continent Transportation Research Symposium, Ames, IA, USA, 15–16 August 2007. [Google Scholar]
- Habel, K.; Viviani, M.; Denarié, E.; Brühwiler, E. Development of the mechanical properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC). Cem. Concr. Res. 2006, 36, 1362–1370. [Google Scholar] [CrossRef]
- Graybeal, B.A. Compressive Behavior of Ultra-High-Performance Fiber-Reinforced Concrete. ACI Mater. J. 2007, 104, 146–152. [Google Scholar]
- Graybeal, B.A. Structural Behavior of Ultra-High Performance Concrete Prestressed I-Girders Final Report; Federal Highway Administration: McLean, VA, USA, 2006. [Google Scholar]
- Graybeal, B.A. Characterization of the Behavior of Ultrahigh Performance; University of Maryland: College Park, MD, USA, 2005. [Google Scholar]
- Ahlborn, T.M.; Peuse, E.J.; Misson, D.L. Concrete For Michigan Bridges Material Performance—Phase I Final Report; Michigan Department of Transportation: Lansing, MI, USA, 2008. [Google Scholar]
- Ghasemi, S.; Zohrevand, P.; Mirmiran, A.; Xiao, Y.; Mackie, K.R. A super lightweight UHPC–HSS deck panel for movable bridges. Eng. Struct. 2016, 113, 186–193. [Google Scholar] [CrossRef]
- Watts, R.; Mills, R.W.; Fish, R. The Highway Coalition Revisited: Using the Advocacy Coalition Framework to Explore the Content of the American Association of State Highway and Transportation Officials’ Daily Transportation Update. Public Voices 2016, 13, 79. [Google Scholar] [CrossRef]
- Huang, C.; Song, J.; Zhang, N.; Lee, G.C. Seismic Performance of Precast Prestressed Concrete Bridge Girders Using Field-Cast Ultrahigh-Performance Concrete Connections. J. Bridg. Eng. 2019, 24, 04019046. [Google Scholar] [CrossRef]
- Deng, S.; Shao, X.; Yan, B.; Wang, Y.; Li, H. On Flexural Performance of Girder-To-Girder Wet Joint for Lightweight Steel-UHPC Composite Bridge. Appl. Sci. 2020, 10, 1335. [Google Scholar] [CrossRef] [Green Version]
- Venancio, V.G. Behavior of Ultra-High Performance Concrete Bridge Deck Panels Compared to Conventional Stay-In-Place Deck Panels in Partial Fulfillment of the Requirements for the Degree; Missouri University of Science and Technology: Rolla, MO, USA, 2016. [Google Scholar]
- Containing, A.; Sludge, M. Properties of Concrete with Recycled Concrete Aggregate Containing Metallurgical Sludge Waste. Materials 2020, 13, 1448. [Google Scholar]
- Duarte, G.; Gomes, R.C.; de Brito, J.; Bravo, M.; Nobre, J. Economic and Technical Viability of Using Shotcrete with Coarse Recycled Concrete Aggregates in Deep Tunnels. Appl. Sci. 2020, 10, 2697. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chin, C.S.; Xia, J. Material Characterization for Sustainable Concrete Paving Blocks. Appl. Sci. 2019, 9, 1197. [Google Scholar] [CrossRef] [Green Version]
- Tam, V.W.; Kotrayothar, D.; Xiao, J. Long-term deformation behaviour of recycled aggregate concrete. Constr. Build. Mater. 2015, 100, 262–272. [Google Scholar] [CrossRef]
- Qi, J.; Wang, J.; Feng, Y. Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate. Adv. Concr. Constr. 2019, 7, 219–229. [Google Scholar]
- Feng, Y.; Qi, J.; Wang, J.; Liu, J.; Liu, J. Flexural Behavior of the Innovative CA-UHPC Slabs with High and Low Reinforcement Ratios. Adv. Mater. Sci. Eng. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- PCI Industry Handbook Committee. PCI Design Handbook, 7th ed.; Precast/Prestressed Concrete Institute PCI: Chicago, IL, USA, 2010; 226p. [Google Scholar]
- Graybeal, B.A. Material Property Characterization of Ultra-High Performance Concrete No. FHWA-HRT-06-103; Federal Highway Administration: Washington, DC, USA, 2006. [Google Scholar]
Ref./Phase | Group | Span | Width | Depth | Reinforcement | 28-Days Concrete Compressive Strength | ||
---|---|---|---|---|---|---|---|---|
Flexural—Top | Flexural Bottom | Shear | ||||||
m | mm | mm | φ (mm) | φ (mm) | c/c (mm) | MPa | ||
Saleem et al. [5] | 1T1S-127#1 | 1.22 | 300 | 127 | No. 13M-Type A | No. 22M Type A | - | 124 |
1T1S-127#2 | 186 | |||||||
Ghasemi et al. [13] | 1T1S-114#1 | 1.22 | 381 | 114 | No. 10M-Type A | No. 16M Type A | - | 166 |
1T1S-114#2 | 114 | 166 | ||||||
1T1S-102 | 102 | 186 | ||||||
Ghasemi et al. [6] | 1T1S-102#1 | 1.22 | 381 | 102 | No. 10 M-Type B | No. 13 M -Type C | - | 166 |
1T1S-102#2 | ||||||||
1T1S-127#1 | 127 | |||||||
1T1S-127#2 | ||||||||
1T1S-102 | 102 | 186 | ||||||
Prestressed HSC/HSFRC deck panels | HSC-1 (*) | 1.22 | 457 | 127 | - | 5.5 mm Type D | #10-s:75 mm | 48 (SD:3.45) |
HSC-2 (*) | ||||||||
HSFRC-1 | 127 | - | 69 (SD:4.42) | |||||
HSFRC-2 | ||||||||
O-HSFRC-1 | 102 | - | 49 (SD:3.83) | |||||
O-HSFRC-2 | ||||||||
Sustainable UHPC-NA/RA deck panels | A-NA | 1.52 | 406 | 127(87) ** | No. 10M Type E | No. 10M Type E | Inclined 5 mm | sUHPC:167 (SD:11.45) NC: 25.6 (SD:1.26) RA: 26.7 (SD: 1.45) |
A-RA | ||||||||
B-NA | 457 | 127 (97) | - | No. 10M Type E | 5 mm | |||
B-RA | ||||||||
C-NA | 457 | 127 (97) | - | No. 10M Type E | N/A | |||
D-RA |
Constituents | Physical Properties |
---|---|
Cement | Grade 52.5 OPC |
GGBS | Grade 100, 12.5 µm, activity index = 98% |
Recycled CA | Crushed RC; particle size range = 5−10 mm |
Sand | Fineness modulus > 2.4 |
Silica fume | Nano-silica, grade 900, 0.15 µm |
Superplasticizer | Poly-carboxylate type |
Steel fibers | Mild steel, plain, ф0.2 × 12.5 mm |
sUHPC | NA Concrete | RA Concrete | ||||
---|---|---|---|---|---|---|
Constituents | Mix Design (kg/m3) | Design Ratios | Mix Design (kg/m3) | Design Ratios | Mix Design (kg/m3) | Design Ratios |
Cement | 498 | 1.00 | 403.3 | 1.00 | 403.3 | 1.00 |
GGBS | 214 | 0.43 | - | - | - | - |
Natural Aggregate | - | - | 935.2 | 2.32 | 654.6 | 1.62 |
Recycled Aggregate | - | - | - | - | 280.6 | 0.70 |
Fine sand | 1020 | 2.05 | 863.2 | 2.14 | 863.2 | 2.14 |
Quartz powder | 211 | 0.42 | - | - | - | - |
Silica fume | 231 | 0.46 | - | - | - | - |
Superplasticizer | 40 | 0.08 | 4.03 | 0.01 | 4.03 | 0.01 |
Steel fibers | 156 | 0.31 | - | - | - | - |
Water | 109 | 0.22 | 188.4 | 0.47 | 188.4 | 0.47 |
Elastic Analyses | Plastic Analyses | ||||||
---|---|---|---|---|---|---|---|
Deck | Neutral Axis | Second Moment of Inertia | Cracking Moment | Crushing Moment | Yielding Moment | Plastic Moment (Rebar) | Plastic Moment (Rebar + UHPC) |
(mm) | (kN·m2) | (kN·m) | (kN·m) | (kN·m) | (kN·m) | (kN·m) | |
Type A | 51.5 | 2159 | 34.2 | 37.2 | 85.5 | 8.1 | 22.5 |
Type B | 51.7 | 2251 | 9.7 | 38.9 | 76.7 | 4.3 | 18.3 |
Type C | 36.3 | 2639 | 16.1 | 37.8 | 154.6 | 4.3 | 15.8 |
Ref./Phase | Group | Deflection at Service Load | Deflection at Ultimate Load | Ultimate Load Test | Target Ultimate Load | Capacity versus Demand | Capacity/Demand per Unit Weight |
---|---|---|---|---|---|---|---|
(mm) | (mm) | (kN) | (kN) | ||||
Saleem et al. [5] | 1T1S-127#1 | - | 25.0 | 178.0 | 36.5 | 4.9 | 3.2 |
1T1S-127#2 | 25.0 | 209.0 | 5.7 | 3.7 | |||
Ghasemi et al. [13] | 1T1S-114#1 | - | 21.0 | 123.0 | 45.6 | 2.7 | 2.6 |
1T1S-114#2 | 22.0 | 110.0 | 2.4 | 2.3 | |||
1T1S-102 | - | 23.0 | 101.0 | 2.2 | 2.3 | ||
Ghasemi et al. [6] | 1T1S-102#1 | - | 30.2 | 74.6 | 45.6 | 1.6 | 1.8 |
1T1S-102#2 | 27.0 | 76.3 | 1.7 | 1.9 | |||
1T1S-127#1 | - | 26.2 | 95.6 | 2.1 | 2.1 | ||
1T1S-127#2 | 24.6 | 87.0 | 1.9 | 1.9 | |||
1T1S-102 | - | 26.2 | 83.0 | 1.8 | 2.0 | ||
Prestressed HSC/HSFRC deck panels | HSC-1 | 0.97 | 14.5 | 117.5 | 59.5 | 2.0 | 1.2 |
HSC-2 | 1.80 | 19.9 | 120.0 | 2.0 | 1.2 | ||
HSFRC-1 | 0.51 | 7.9 | 96.0 | 1.6 | 0.9 | ||
HSFRC-2 | 0.97 | 3.9 | 97.0 | 1.6 | 1.0 | ||
O-HSFRC-1 | 7.30 | 27.2 | 28.0 | 0.5 | 0.3 | ||
O-HSFRC-2 | - | 14.4 | 45.0 | 0.8 | 0.6 | ||
Sustainable UHPC-NA/RA deck panels | A-NA | 0.98 | 15.8 | 114.4 | 45.4 | 2.5 | 0.8 |
A-RA | 0.98 | 17.2 | 114.2 | 2.5 | 0.8 | ||
B-NA | 2.68 | 7.5 | 46.4 | 51.1 | 0.9 | 0.3 | |
B-RA | 2.67 | 10.2 | 47.5 | 0.9 | 0.3 | ||
C-NA | 4.85 | 5.0 | 39.5 | 0.8 | 0.3 | ||
C-RA | 2.12 | 8.1 | 57.2 | 1.1 | 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, M.N.; Saleem, M.A.; Xia, J.; Saleem, M.M. Experimental Characterization of Prefabricated Bridge Deck Panels Prepared with Prestressed and Sustainable Ultra-High Performance Concrete. Appl. Sci. 2020, 10, 5132. https://doi.org/10.3390/app10155132
Zafar MN, Saleem MA, Xia J, Saleem MM. Experimental Characterization of Prefabricated Bridge Deck Panels Prepared with Prestressed and Sustainable Ultra-High Performance Concrete. Applied Sciences. 2020; 10(15):5132. https://doi.org/10.3390/app10155132
Chicago/Turabian StyleZafar, Muhammad Naveed, Muhammad Azhar Saleem, Jun Xia, and Muhammad Mazhar Saleem. 2020. "Experimental Characterization of Prefabricated Bridge Deck Panels Prepared with Prestressed and Sustainable Ultra-High Performance Concrete" Applied Sciences 10, no. 15: 5132. https://doi.org/10.3390/app10155132
APA StyleZafar, M. N., Saleem, M. A., Xia, J., & Saleem, M. M. (2020). Experimental Characterization of Prefabricated Bridge Deck Panels Prepared with Prestressed and Sustainable Ultra-High Performance Concrete. Applied Sciences, 10(15), 5132. https://doi.org/10.3390/app10155132