Techno-Economic Analysis of a Solar Thermal Plant for Large-Scale Water Pasteurization
Abstract
:1. Introduction
2. Experimental Pasteurization Tests
3. Plant Model Design
3.1. Solar Field
3.2. Auxiliary Gas Burner
3.3. Plate Heat Exchanger
3.4. Heating Coils
3.5. Pumping System and Pipe Losses
3.6. Treatment Unit
3.7. Lumped-Component Plant Model
4. Cost Estimation Model
4.1. Capital Costs
4.2. Operating Costs
4.3. Insurance and Maintenance Costs
4.4. Total Costs
4.5. Economic Optimization Scenarios
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
T | Temperature |
A | Area |
Efficiency | |
Number of transport units | |
Nusselt number | |
Convective heat transfer coefficient | |
Dynamic viscosity | |
Thermal diffusivity | |
N | Number of ducts |
G | Mass-flow velocity |
Solar irradiance | |
Mass flow rate | |
H | Heating value or Head losses |
C | Heat capacity or Cost |
Prandtl number | |
Thermal conductivity | |
Chevron angle | |
s | Thickness or spacing |
f | Friction factor |
Rayleigh number | |
Heat flux | |
Specific heat | |
Effectiveness | |
Reynolds number | |
Solar factor | |
R | Resistance |
Density | |
L | Length or width |
Pressure drop | |
v | Fluid velocity |
References
- WHO/UNICEF. Progress on Drinking Water, Sanitation, and Hygiene: 2017 Update and SDG Baselines; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization (WHO) Chron.: Geneva, Switzerland, 2011; Volume 38, pp. 104–108.
- Cheremisinoff, N.; Knovel, F. Handbook of Water and Wastewater Treatment Technologies; Chemical Petrochemical & Process; Elsevier Science: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; Von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef]
- Bergamasco, L.; Alberghini, M.; Fasano, M. Nano-metering of solvated biomolecules or nanoparticles from water self-diffusivity in bio-inspired nanopores. Nanoscale Res. Lett. 2019, 14, 336. [Google Scholar] [CrossRef]
- Howe, K.J.; Hand, D.W.; Crittenden, J.C.; Trussell, R.R.; Tchobanoglous, G. Principles of Water Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Woldemariam, D.; Martin, A.; Santarelli, M. Exergy analysis of air-gap membrane distillation systems for water purification applications. Appl. Sci. 2017, 7, 301. [Google Scholar] [CrossRef] [Green Version]
- Saber, O.; Kotb, H.M. Designing Dual-Function Nanostructures for Water Purification in Sunlight. Appl. Sci. 2020, 10, 1786. [Google Scholar] [CrossRef] [Green Version]
- Lau, M.; Monis, P.; Ryan, G.; Salveson, A.; Blackbeard, J.; Gray, S.; Sanciolo, P. Selection of surrogate pathogens and process indicator organisms for pasteurisation of municipal wastewater—A survey of literature data on heat inactivation of pathogens. Process Saf. Environ. Prot. 2019, 133, 301–314. [Google Scholar] [CrossRef]
- Voukkali, I.; Zorpas, A. Disinfection methods and by-products formation. Desalin. Water Treat. 2015, 56, 1150–1161. [Google Scholar] [CrossRef]
- Hua, G.; Reckhow, D.A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Res. 2007, 41, 1667–1678. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003, 37, 1469–1487. [Google Scholar] [CrossRef]
- Hijnen, W.; Beerendonk, E.; Medema, G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: A review. Water Res. 2006, 40, 3–22. [Google Scholar] [CrossRef]
- Gray, N.F. Ultraviolet Disinfection. In Microbiology of Waterborne Diseases; Elsevier: Amsterdam, The Netherlands, 2014; pp. 617–630. [Google Scholar]
- Nguyen, H.T.; Corry, J.E.; Miles, C.A. Heat resistance and mechanism of heat inactivation in thermophilic campylobacters. Appl. Environ. Microbiol. 2006, 72, 908–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindahl, T. Irreversible heat inactivation of transfer ribonucleic acids. J. Biol. Chem. 1967, 242, 1970–1973. [Google Scholar] [PubMed]
- Verma, S.K.; Singhal, P.; Chauhan, D.S. A synergistic evaluation on application of solar-thermal energy in water purification: Current scenario and future prospects. Energy Convers. Manag. 2019, 180, 372–390. [Google Scholar] [CrossRef]
- Chiavazzo, E.; Morciano, M.; Viglino, F.; Fasano, M.; Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 2018, 1, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Hohne, P.; Kusakana, K.; Numbi, B. A review of water heating technologies: An application to the South African context. Energy Rep. 2019, 5, 1–19. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; Ni, G.W.; Zhu, S.; Zhu, J. The revival of thermal utilization from the Sun: Interfacial solar vapor generation. Natl. Sci. Rev. 2019, 6, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Signorato, F.; Morciano, M.; Bergamasco, L.; Fasano, M.; Asinari, P. Exergy analysis of solar desalination systems based on passive multi-effect membrane distillation. Energy Rep. 2020, 6, 445–454. [Google Scholar] [CrossRef]
- Morciano, M.; Fasano, M.; Bergamasco, L.; Albiero, A.; Curzio, M.L.; Asinari, P.; Chiavazzo, E. Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets. Appl. Energy 2020, 258, 114086. [Google Scholar] [CrossRef]
- Fasano, M.; Bergamasco, L.; Lombardo, A.; Zanini, M.; Chiavazzo, E.; Asinari, P. Water/Ethanol and 13X Zeolite Pairs for Long-Term Thermal Energy Storage at Ambient Pressure. Front. Energy Res. 2019, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Verrilli, F.; Srinivasan, S.; Gambino, G.; Canelli, M.; Himanka, M.; Del Vecchio, C.; Sasso, M.; Glielmo, L. Model predictive control-based optimal operations of district heating system with thermal energy storage and flexible loads. IEEE Trans. Autom. Sci. Eng. 2016, 14, 547–557. [Google Scholar] [CrossRef]
- Pizzolato, A.; Donato, F.; Verda, V.; Santarelli, M.; Sciacovelli, A. CSP plants with thermocline thermal energy storage and integrated steam generator–Techno-economic modeling and design optimization. Energy 2017, 139, 231–246. [Google Scholar] [CrossRef]
- Feachem, R.G.; Bradley, D.J.; Garelick, H.; Mara, D.D. Sanitation and Disease: Health Aspects of Excreta and Wastewater Management; John Wiley and Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Alberghini, M.; Morciano, M.; Bergamasco, L.; Fasano, M.; Lavagna, L.; Humbert, G.; Sani, E.; Pavese, M.; Chiavazzo, E.; Asinari, P. Coffee-based colloids for direct solar absorption. Sci. Rep. 2019, 9, 4701. [Google Scholar] [CrossRef]
- Alexander, M. Most probable number method for microbial populations. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 815–820. [Google Scholar]
- Lazzarin, R.; Noro, M.; Righetti, G.; Mancin, S. Application of hybrid PCM thermal energy storages with and without al foams in solar heating/cooling and ground source absorption heat pump plant: An energy and economic analysis. Appl. Sci. 2019, 9, 1007. [Google Scholar] [CrossRef] [Green Version]
- Kloben Industries S.r.l. Scheda Tecnica: Collettore Solare Sky Pro Advanced; Kloben Industries S.r.l.: Milano, Italy, 2016. [Google Scholar]
- PVGIS: Photovoltaic Geographical Information System. Available online: http://re.jrc.ec.europa.eu/pvgis/ (accessed on 18 September 2018).
- Marcel, S.; Huld, T.; Dunlop, E. PV-GIS: A web-based solar radiation database for the calculation of PV potential in Europe. Int. J. Sol. Energy 2005, 24, 55–67. [Google Scholar]
- Moore, N.; Gibson, N.; Wright, G. Hot water service using high-efficiency gas-fired appliances. Build. Serv. Eng. Res. Technol. 1992, 13, 147–153. [Google Scholar] [CrossRef]
- Roslyakov, P.; Proskurin, Y.V.; Ionkin, I. Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers. J. Phys. Conf. Ser. 2017, 891, 012243. [Google Scholar] [CrossRef]
- Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Khan, T.; Khan, M.; Chyu, M.; Ayub, Z. Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Appl. Therm. Eng. 2010, 30, 1058–1065. [Google Scholar] [CrossRef]
- Neagu, A.; Koncsag, C.; Barbulescu, A.; Botez, E. Estimation of pressure drop in gasket plate heat exchangers. Ovidius Univ. Ann. Chem. 2016, 27, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Kakaç, S.; Liu, H.; Pramuanjaroenkij, A. Heat Exchangers: Selection, Rating, and Thermal Design, 2nd ed.; Taylor & Francis: Abingdon, UK, 2002. [Google Scholar]
- Whitaker, S. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J. 1972, 18, 361–371. [Google Scholar] [CrossRef]
- Churchill, S.; Chu, H. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int. J. Heat Mass Transf. 1975, 18, 1049–1053. [Google Scholar] [CrossRef]
- Citrini, D.; Noseda, G. Idraulica; Casa Editrice Ambrosiana: Rozzano, Italy, 1987. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Abrams, A.; Farzan, F.; Lahiri, S.; Masiello, R. Optimizing Concentrating Solar Power with Thermal Energy Storage Systems in California; DNV GL: Oslo, Norway, 2014. [Google Scholar]
- González-Portillo, L.; Muñoz-Antón, J.; Martínez-Val, J. An analytical optimization of thermal energy storage for electricity cost reduction in solar thermal electric plants. Appl. Energy 2017, 185, 531–546. [Google Scholar] [CrossRef]
- Guédez, R.; Spelling, J.; Laumert, B.; Fransson, T. Optimization of Thermal Energy Storage Integration Strategies for Peak Power Production by Concentrating Solar Power Plants. Energy Procedia 2014, 49, 1642–1651. [Google Scholar] [CrossRef] [Green Version]
- Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A. Analysis, Synthesis and Design of Chemical Processes; Pearson Education: London, UK, 2008. [Google Scholar]
- Eurostat Energy Database. Available online: https://ec.europa.eu/eurostat/web/energy/data/database (accessed on 12 November 2018).
- Pitz-Paal, R.; Dersch, J.; Milow, B. European Concentrated Solar Thermal Road-Mapping; The German Aerospace Center (DLR): Stuttgart, Germany, 2005. [Google Scholar]
- Taylor, M. Renewable Energy Technologies Cost Analysis Series: Concentrating Solar Power; IRENA: Abu Dhabi, United Arab Emirates, 2012; Volume 1. [Google Scholar]
- Mellen, C.M.; Evans, F.C. Valuation for M & A: Building Value in Private Companies; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 587. [Google Scholar]
- Damodaran, A. Equity Risk Premiums (ERP): Determinants, Estimation and Implications—The 2019 Edition. Soc. Sci. Res. Netw. 2019. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, P.; Pershin, V.; Acin, I. Market Risk Premium and Risk-Free Rate used for 59 Countries in 2018: A Survey. Soc. Sci. Res. Netw. 2018. [Google Scholar] [CrossRef]
- Izquierdo, S.; Montañés, C.; Dopazo, C.; Fueyo, N. Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage. Energy Policy 2010, 38, 6215–6221. [Google Scholar] [CrossRef]
- Morciano, M.; Fasano, M.; Secreto, M.; Jamolov, U.; Chiavazzo, E.; Asinari, P. Installation of a concentrated solar power system for the thermal needs of buildings or industrial processes. Energy Procedia 2016, 101, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Schwantes, R.; Cipollina, A.; Gross, F.; Koschikowski, J.; Pfeifle, D.; Rolletschek, M.; Subiela, V. Membrane distillation: Solar and waste heat driven demonstration plants for desalination. Desalination 2013, 323, 93–106. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Specific or different uses of the above reported quantities are detailed in the text. |
Component | ||||||||
---|---|---|---|---|---|---|---|---|
Tank | 4.8509 | −0.3973 | 0.1445 | - | - | - | - | 1.10 |
Heating coils | 4.1884 | −0.2503 | 0.1974 | 1.63 | 1.66 | 1.00 | 1.00 | - |
Pumps | 3.3892 | 0.0536 | 0.1538 | 1.89 | 1.35 | 1.00 | 1.00 | - |
Gas burner | 2.0829 | 0.9074 | −0.0243 | - | - | - | - | 2.19 |
Parameter | Range | Units |
---|---|---|
Plant water treatment capacity | 50 ÷ 500 | L s |
Solar Multiple (SM) of the plant | 0 ÷ 3 | - |
Thermal Energy Storage (TES) duration | 0 ÷ 12 | hours |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bologna, A.; Fasano, M.; Bergamasco, L.; Morciano, M.; Bersani, F.; Asinari, P.; Meucci, L.; Chiavazzo, E. Techno-Economic Analysis of a Solar Thermal Plant for Large-Scale Water Pasteurization. Appl. Sci. 2020, 10, 4771. https://doi.org/10.3390/app10144771
Bologna A, Fasano M, Bergamasco L, Morciano M, Bersani F, Asinari P, Meucci L, Chiavazzo E. Techno-Economic Analysis of a Solar Thermal Plant for Large-Scale Water Pasteurization. Applied Sciences. 2020; 10(14):4771. https://doi.org/10.3390/app10144771
Chicago/Turabian StyleBologna, Alberto, Matteo Fasano, Luca Bergamasco, Matteo Morciano, Francesca Bersani, Pietro Asinari, Lorenza Meucci, and Eliodoro Chiavazzo. 2020. "Techno-Economic Analysis of a Solar Thermal Plant for Large-Scale Water Pasteurization" Applied Sciences 10, no. 14: 4771. https://doi.org/10.3390/app10144771
APA StyleBologna, A., Fasano, M., Bergamasco, L., Morciano, M., Bersani, F., Asinari, P., Meucci, L., & Chiavazzo, E. (2020). Techno-Economic Analysis of a Solar Thermal Plant for Large-Scale Water Pasteurization. Applied Sciences, 10(14), 4771. https://doi.org/10.3390/app10144771