Urase, Y.; Nishio, M.; Ueno, Y.; Kono, A.K.; Sofue, K.; Kanda, T.; Maeda, T.; Nogami, M.; Hori, M.; Murakami, T.
Simulation Study of Low-Dose Sparse-Sampling CT with Deep Learning-Based Reconstruction: Usefulness for Evaluation of Ovarian Cancer Metastasis. Appl. Sci. 2020, 10, 4446.
https://doi.org/10.3390/app10134446
AMA Style
Urase Y, Nishio M, Ueno Y, Kono AK, Sofue K, Kanda T, Maeda T, Nogami M, Hori M, Murakami T.
Simulation Study of Low-Dose Sparse-Sampling CT with Deep Learning-Based Reconstruction: Usefulness for Evaluation of Ovarian Cancer Metastasis. Applied Sciences. 2020; 10(13):4446.
https://doi.org/10.3390/app10134446
Chicago/Turabian Style
Urase, Yasuyo, Mizuho Nishio, Yoshiko Ueno, Atsushi K. Kono, Keitaro Sofue, Tomonori Kanda, Takaki Maeda, Munenobu Nogami, Masatoshi Hori, and Takamichi Murakami.
2020. "Simulation Study of Low-Dose Sparse-Sampling CT with Deep Learning-Based Reconstruction: Usefulness for Evaluation of Ovarian Cancer Metastasis" Applied Sciences 10, no. 13: 4446.
https://doi.org/10.3390/app10134446
APA Style
Urase, Y., Nishio, M., Ueno, Y., Kono, A. K., Sofue, K., Kanda, T., Maeda, T., Nogami, M., Hori, M., & Murakami, T.
(2020). Simulation Study of Low-Dose Sparse-Sampling CT with Deep Learning-Based Reconstruction: Usefulness for Evaluation of Ovarian Cancer Metastasis. Applied Sciences, 10(13), 4446.
https://doi.org/10.3390/app10134446