Robust Adaptive Control for Nonlinear Aircraft System with Uncertainties
Abstract
:1. Introduction
2. Problem Formulation
3. Controller Design
3.1. State Augmentation
3.2. Reference Model
3.3. Controller Design
3.3.1. Baseline Controller
3.3.2. Adaptive Controller
3.3.3. Robust Controller
3.4. Stability Analysis
4. Flight Control Simulation Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zong, Q.; Ji, Y.; Zeng, F.; Liu, H. Output feedback back-stepping control for a generic Hypersonic Vehicle via small-gain theorem. Aerosp. Sci. Technol. 2012, 23, 409–417. [Google Scholar] [CrossRef]
- Younes, A.B.; Turner, J.D. Derivative Enhanced Optimal Feedback Control Using Computational Differentiation. Int. J. Appl. Exp. Math. Res. Artic. 2016, 2016, 112. [Google Scholar] [CrossRef]
- Hess, R.A. Robust Flight Control Design to Minimize Aircraft Loss-of-Control Incidents. Aerospace 2014, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Michailidis, I.; Baldi, S.; Kosmatopoulos, E.B.; Ioannou, P.A. Adaptive Optimal Control for Large-Scale Nonlinear Systems. IEEE Trans. Autom. Control 2017, 9286, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Astolfi, A.; Member, S.; Ortega, R. Immersion and Invariance: A New Tool for Stabilization and Adaptive Control of Nonlinear Systems. IEEE Trans. Automat. Control. 2003, 48, 590–606. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chen, X.; Xu, D. Adaptive Neural Fault-Tolerant Control for the Yaw Control of UAV Helicopters with Input Saturation and Full-State Constraints. Appl. Sci. 2020, 10, 1404. [Google Scholar] [CrossRef] [Green Version]
- Baek, J. Practical Adaptive Sliding-Mode Control Approach for Precise Tracking of Robot Manipulators. Appl. Sci. 2020, 10, 2909. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, H.P.; Yamron, J.; Kezer, A. Design Of Model-Reference Adaptive Control Systems For Aircraft; Massachusetts Institute of Technology, Instrumentation Laboratory: Jackson & Moreland: Cambridge, MA, USA, 1958. [Google Scholar]
- Mooij, E. Numerical Investigation of Model Reference Adaptive Control for Hypersonic Aircraft. J. Guid. Control. Dyn. 2001, 24, 315–323. [Google Scholar] [CrossRef]
- Guo, J.; Tao, G.; Liu, Y. A multivariable MRAC scheme with application to a nonlinear aircraft model. Automatica 2011, 47, 804–812. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, Z.; Zhu, Y. Acceleration autopilot for a guided spinning rocket via adaptive output feedback. Aerosp. Sci. Technol. 2018, 77, 573–584. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, K.; Asadi, D.; Pazooki, F. Nonlinear L1 adaptive control of an airplane with structural damage. Proc. Inst. Mech. Eng. Part G. J. Aerosp. Eng. 2019, 233, 341–353. [Google Scholar] [CrossRef]
- Lavretsky, E.; Hovakimyan, N. Stable adaptation in the presence of input constraints. Syst. Control Lett. 2007, 56, 722–729. [Google Scholar] [CrossRef]
- Rohrs, C.; Valavani, L.; Athans, M.; Stein, G. Robustness of Continuous-Time Adaptive Control Algorithms in the Presence of Unmodeled Dynamics. IEEE Trans. Autom. Control 1985, 30, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Ioannout, P.A.; Kokotovic, P. V Instability Analysis and Improvement of Robustness of Adaptive Control. Automatica 1984, 20, 583–594. [Google Scholar] [CrossRef]
- Station, P.O.B.Y.; Haven, N. Improving Transient Response of Adaptive Control Systems using Multiple Models and Switching. IEEE Trans. Autom. Control 1994, 39, 1861–1866. [Google Scholar] [CrossRef]
- Manuel, A.; Duarte, K.S.N. Combined Direct and Indirect Approach to Adaptive Control. IEEE Trans. Autom. Control 1989, 34, 1071–1075. [Google Scholar] [CrossRef]
- Lavretsky, E. Combined/Composite Model Reference Adaptive Control. IEEE Trans. Autom. Control 2009, 54, 2692–2697. [Google Scholar] [CrossRef]
- Gregory, I.M.; Gadient, R.O.; Lavretsky, E. Flight Test of Composite Model Reference Adaptive Control (CMRAC) Augmentation Using NASA AirSTAR Infrastructure. AIAA Guid. Navig. Control Conf. 2011, 2011, 6452. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Hovakimyan, N. Design and Analysis of a Novel L1 Adaptive Control Architecture With Guaranteed Transient Performance. IEEE Trans. Autom. Control 2008, 53, 586–591. [Google Scholar] [CrossRef]
- Gregory, I.; Xargay, E.; Cao, C.; Hovakimyan, N. L1 Adaptive Control Design for NASA AirSTAR Flight Test Vehicle. AIAA Guid. Navig. Control Conf. 2009, 1–27. [Google Scholar] [CrossRef]
- Yucelen, T.; Haddad, W.M. Low-Frequency Learning and Fast Adaptation in Model Reference Adaptive Control. IEEE Trans. Autom. Control 2013, 58, 1080–1085. [Google Scholar] [CrossRef]
- Rajpurohit, T.; Haddad, W.M.; Yucelen, T. Output Feedback Adaptive Control with Low-Frequency Learning and Fast Adaptation. J. Guid. Control Dyn. 2016, 39, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Gibson, T.E.; Qu, Z.; Anuradha, M.A.; Lavretsky, E. Adaptive output feedback based on closed-loop reference models. IEEE Trans. Automat. Contr. 2015, 60, 2728–2733. [Google Scholar] [CrossRef] [Green Version]
- Lavretsky, E.; Wise, K.A. Robust and Adaptive Control with Aerospace Applications; Advanced Textbooks in Control and Signal Processing; Springer: London, UK, 2013; ISBN 978-1-4471-4395-6. [Google Scholar]
- Qu, Z.; Annaswamy, A.M. Adaptive output-feedback control with closed-loop reference models for very flexible aircraft. J. Guid. Control Dyn. 2016, 39, 873–888. [Google Scholar] [CrossRef]
- Wiese, D.P.; Annaswamy, A.M.; Muse, J.A.; Bolender, M.A.; Lavretsky, E. Adaptive output feedback based on closed-loop reference models for hypersonic vehicles. J. Guid. Control Dyn. 2015, 38, 2429–2440. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Minyue, F.; de Souza, C. E H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Trans. Autom. Control 1992, 37, 1253–1256. [Google Scholar] [CrossRef]
- Scherer, C. The Riccati Inequality and State-Space H∞ Optimal Control; Diss. Julius Maximilians University: Würzburg, Germany, 1990. [Google Scholar]
- Nguyen, N.; Field, M. Least-Squares Model-Reference Adaptive Control with Chebyshev. J. Aerosp. Inf. Syst. 2013, 10, 29–31. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, J.; Wang, W. Robust Adaptive Control for Nonlinear Aircraft System with Uncertainties. Appl. Sci. 2020, 10, 4270. https://doi.org/10.3390/app10124270
Chen J, Wang J, Wang W. Robust Adaptive Control for Nonlinear Aircraft System with Uncertainties. Applied Sciences. 2020; 10(12):4270. https://doi.org/10.3390/app10124270
Chicago/Turabian StyleChen, Jiao, Jiangyun Wang, and Weihong Wang. 2020. "Robust Adaptive Control for Nonlinear Aircraft System with Uncertainties" Applied Sciences 10, no. 12: 4270. https://doi.org/10.3390/app10124270
APA StyleChen, J., Wang, J., & Wang, W. (2020). Robust Adaptive Control for Nonlinear Aircraft System with Uncertainties. Applied Sciences, 10(12), 4270. https://doi.org/10.3390/app10124270